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Abstract

We develop an overlapping generations model that incorporates agents’ time inconsistency,

educational loans, and human capital accumulation. Using this model, we show that an increase

in present bias raises the growth-maximizing educational subsidy.
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1 Introduction

Models with agents’ present bias yield different results from those without it. For example, Krusell

et al. (2002) show that agents with hyperbolic discounting (i.e., present-biased preferences) have

lower saving rates than those without such preferences, resulting in lower aggregate capital ac-

cumulation. This indicates that present bias affects other intertemporal decision-making as well.

Therefore, in this paper, we focus on educational loans. In the US and Japan, many students face

intertemporal decisions, such as whether to pursue education using student loans. This implies that
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time inconsistency stemming from present bias may influence aggregate human capital accumula-

tion and economic growth. To analyze these effects, we develop an overlapping generations model

with agents’ time inconsistency, as follows.

Agents in the model live for three periods and accumulate human capital by investing their time

and goods—financed by educational loans—during the first period. In the second period, they earn

labor income, save, and repay their loans. In the final period, they consume their savings. The

government provides subsidies to reduce the agents’ loan burdens. A key assumption we introduce

is the presence of agents with hyperbolic discounting (βδ) preferences, as in Laibson (1997). This

extension allows us to analyze the effects of hyperbolic discounting on economic growth and the

role of educational subsidies.

The main contribution of this paper is the finding that a stronger present bias (i.e., increased

impatience) raises the growth-maximizing subsidy rate. This result arises because more impatient

agents invest less in education and accumulate less human capital. Consequently, economic growth

declines, requiring higher subsidies to restore it.

Next, we mention the related literature. The market structure in Boldrin and Montes (2005)

closely resembles that in our model. They examine the case of time-consistent agents and focus

on dynamic inefficiency. In contrast, we study the case of time-inconsistent agents and analyze the

role of educational subsidies. Our study thus complements theirs. Hiraguchi (2016) also analyzes

a model in which agents exhibit hyperbolic discounting, as in our setting. However, his model

assumes that human capital is accumulated solely through time investment. In contrast, our model

incorporates both time and goods (i.e., loans), allowing us to consider the role of educational loans

more explicitly. Hence, our study complements his as well.

2 The model

2.1 Individuals

Time is discrete and denoted by t = 0, 1, 2, · · · . Each individual lives for three periods (childhood,

adulthood, and old age). In the first period (childhood), individuals decide how much to invest in

their own education and borrow xt−1 units of funds necessary for that investment. Additionally,

individuals decide how much time to devote to education. In the second period (adulthood), indi-
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viduals supply efficient units of labor, pay a lump-sum tax, repay educational loans, consume final

goods, and save any remaining income. In the final period (old age), individuals retire and consume

final goods. Members of the cohort born in period t − 1 become active workers in period t; thus,

we call this cohort generation t. The population size is constant and normalized to one. In the first

and second periods of life, individuals are endowed with one unit of time. In the first period, they

spend et units of time on education and 1− et on leisure. In the second period, they devote lt units

of time to working in the labor market and spend 1− lt on leisure. Individuals derive utility from

leisure in the first and second periods, their own consumption during adulthood c1,t, and their own

consumption during old age c2,t+1. The lifetime utility of individuals in generation t is expressed as

ut = γ log(1− et−1) + β{δ[log ct + γ log(1− lt)] + δ2 log ct+1}. (1)

where the positive parameter γ denotes the weight of leisure, and δ ∈ (0, 1) is the long-term

discount factor. Since we assume that β ∈ (0, 1], agents evaluate current utility more heavily

than future utility. In other words, β is a parameter denoting present bias. Behavioral economics

studies consider two types of agents. First, sophisticated agents understand that their preferences

change over time. In this model, they know that their future selves will also have the present

bias parameter β and plan accordingly. In other words, they recognize that their future selves

will maximize log ct + γ log(1− lt) + βδ log ct+1 in the second period. Second, näıve agents do not

understand that their preferences change over time. In this model, they believe their future selves

will not exhibit present bias, and therefore, they expect no deviation from their current plans. That

is, they believe their future selves will maximize log ct+γ log(1− lt)+δ log ct+1 in the second period.

In this study, we consider the case where all agents are näıve.

Individuals divide their income wthtlt between consumption, repayment of educational loans,

payment of a lump sum tax, and saving st for old age. Here, wt and τt are the wage rate for efficient

units of labor and the lump-sum tax, respectively. Rt represents the gross interest rate in period t.

Individuals must repay the borrowed funds plus interest, but the government subsidizes ρ percent

of the repayment amount. In addition, they receive Rt+1st in their old age, which is their savings

plus interest. Thus, the budget and time constraints for individuals in generation t are expressed
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as follows:

ct + st + (1− ρ)Rtxt−1 + τt = wthtlt, (2)

ct+1 = Rt+1st. (3)

We assume that the human capital production function is given by the following expression:

ht = ϕ(et−1ht−1)
σx1−σ

t−1 , (4)

where ϕ and σ are parameters. ht−1 reflects externalities from the human capital stock of parents.

2.2 Firm

Assuming that there are many competitive producers with constant-returns-to-scale production

technology, the aggregate production function of the economy is given by:

Yt = AKα
t L

1−α
t , 0 < α < 1, (5)

where Yt, Kt, and Lt denote aggregate output, physical capital, and effective labor employed in

period t, respectively. At is the productivity parameter and satisfies A > 0. The profit maximization

conditions are:

wt = (1− α)A

(
Kt

Lt

)α

, (6)

Rt = αA

(
Kt

Lt

)α−1

. (7)

2.3 Government

The government collects lump-sum taxes from individuals and subsidizes ρ percent of the repayment

of educational loans. The subsidy is financed by a balanced budget. Therefore, the government’s

budget constraint is:

τt = ρRtxt−1. (8)
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3 The agent’s optimization problem

In this study, we consider the case in which all agents are näıve. From (1), (2), (3), and (4), in the

first period, the young agent solves the following utility maximization problem:

max γ log(1− et−1) + β{δ[log ct + γ log(1− lt)] + δ2 log ct+1},

s.t. ct + st = wthtlt −Rtxt−1 − τt,

ct+1 = Rt+1st,

ht = ϕ(et−1ht−1)
σx1−σ

t−1 .

Combining the first-order conditions and (8), we obtain the following solutions:

et−1 =
βδ(1 + δ)(1− ρ)σ

βδ(1 + δ)(1− ρ)σ + γ(σ − ρ)
≡ ē(ρ), (9)

lt =
(1 + δ)(1− ρ)

(1 + δ)(1− ρ) + γ(σ − ρ)
≡ l̂(ρ), (10)

xt−1 =
(1− σ)l̂(ρ)ŵtĥt

(1− ρ)R̂t

≡ x̄t, (11)

st =
δ(σ − ρ)ŵtht

(1 + δ)(1− ρ) + γ(σ − ρ)
≡ ŝt, (12)

ct =
1

δ
ŝt ≡ ĉt, (13)

ct+1 = R̂tŝt ≡ ĉt+1. (14)

We define the right-hand sides of (9) to (14) as ē(ρ), l̂(ρ), x̄t, ŝt, ĉt, and ĉt+1, respectively. Young

agents of generation t solve the above optimization problem at time t − 1. Therefore, they must

predict future variables. The variables with a ”ˆ” represent the values predicted by young agents.

As we will see later, the labor supply determined by the young agent differs from that determined

by the adult agent. The näıve agent believes that the labor supply chosen in the first period will

be the same as that chosen in the second period, so actual and predicted values differ.

In the second period, the näıve agent discounts the utility of the third period. The values of

et−1 and xt−1, determined in the first period, cannot be changed in the second period. Therefore,

from (2), (3), (9), and (11), the adult agent solves the following utility maximization problem with
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et−1 and xt−1 given:

max log ct + γ log(1− lt) + βδ log ct+1,

s.t. ct + st = wthtlt − (1− ρ)Rtxt−1 − τt,

ct+1 = Rt+1st,

et−1 = ē(ρ),

xt−1 = x̄t−1.

We obtain the following solutions:

lt =
1 + βδ

1 + βδ + γ
+

γ(1− σ)l̂(ρ)ŵtĥtRt

(1 + βδ + γ)(1− ρ)wthtR̂t

≡ l̄t(ρ), (15)

st =
βδ

1 + βδ + γ
wtht −

βδ(1− σ)l̂(ρ)ŵtĥtRt

(1 + βδ + γ)(1− ρ)R̂t

. (16)

We define the right-hand side of (15) as l̄t(ρ). We make the following assumption to ensure positive

equilibrium savings:

Assumption 1.

ρ < σ

4 Equilibrium

4.1 Market equilibrium

We first describe the labor market equilibrium condition. Effective labor is used for the production

of final goods. A näıve agent determines a different labor supply in the first period from that

in the second period. However, the näıve agent in the first period believes that the labor supply

determined in that period will be the same as in the second period. Therefore, they predict that

the following labor market equilibrium will hold in the second period at time t− 1.

L̂t = l̂(ρ)ĥt, (17)
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where L̂t denotes the labor supply at time t predicted by the young at time t − 1. This equation

implies the following assumption: a näıve agent predicts that the other agents will also behave

as näıve agents.1 Hereafter, we will also adopt it. In reality, adults at time t solve the utility

maximization problem again at time t. Therefore, the labor market equilibrium at time t is

Lt = l̄t(ρ)ht. (18)

Next, we describe the equilibrium condition of the asset market. The asset market equilibrium

condition is:

st = Kt+1 + xt. (19)

The left-hand side of (19) is the saving volume of adult individuals. The right-hand side is the sum

of investment in capital and demand for education funds.

From (4) and (9), the predicted value of ht+1 for the young at time t is

ĥt+1 = ϕ(ē(ρ)ht)
σx1−σ

t . (20)

From (11) and (20), we obtain:

xt =

[
ϕ(1− σ)l̂(ρ)ŵt+1

(1− ρ)R̂t+1

] 1
σ

ē(ρ)ht. (21)

From (6), (7), and (17), we obtain:

ŵt+1

R̂t+1

=
(1− α)K̂t+1

αL̂t+1

. (22)

From (10), (17), (21), and (22), we obtain:

xt =

[
(1− α)(1− σ)ϕK̂t+1

α(1− ρ)ĥt+1

] 1
σ

ē(ρ)ht. (23)

From (20) and (23), we find that xt is a function of K̂t+1 and ht. Therefore, we denote xt =

1This assumption adopted by Gabrieli and Ghosal (2013), Ojima (2017), and Futagami and Maeda (2023).
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x(K̂t+1, ht). From (19), we obtain:

st = Kt+1 + x(K̂t+1, ht). (24)

The value of st is determined by adults at time t, and is therefore given for the young. The value

of xt has already been determined at time t, so it cannot be changed at time t+ 1. From (24), the

young predict Kt+1 to satisfy st = K̂t+1 + x(K̂t+1, ht) at time t. At the end of time t, st and xt are

determined, and K̂t+1 = Kt+1 is established to satisfy (24). Therefore, the predicted value of Kt+1

is the same as the realized value. When Kt+1 is given, ĥt+1 is determined to be ĥt+1 = ht+1 using

(20) and (23). Therefore, we rewrite (17) as follows:

L̂t+1 = l̂(ρ)ht+1. (25)

From (6), (7), (10), (15), (18), and (25), we obtain:

l̄t(ρ) =
(1 + βδ)(1− ρ)

(1 + βδ)(1− ρ) + γ(σ − ρ)
≡ l̄(ρ). (26)

We define the right-hand side of (26) as l̄(ρ). From (6), (7), (16), (25), and (26), we obtain:

st =
(1− α)βδ(σ − ρ)A

(1 + βδ)(1− ρ) + γ(σ − ρ)
ht

[
kt
l̄(ρ)

]α
, (27)

where we define kt as kt ≡ Kt
ht
.

4.2 Dynamics

The dynamics of this economy are characterized by kt. From (10), (20), (23), K̂t+1 = Kt+1,

ĥt+1 = ht+1, we obtain:

ht+1

ht
= ϕē(ρ)

[
(1− α)(1− σ)ϕ

α(1− ρ)

] 1−σ
σ

k
1−σ
σ

t+1 ≡ 1 + gh,t. (28)
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Figure 1: The dynamics of kt

We define the right-hand side of (28) as 1 + gh,t. From (18), (19), (23), (25),(26), and (27), with

K̂t+1 = Kt+1, and ĥt+1 = ht+1, we obtain:

(1− α)βδ(σ − ρ)A

(1 + βδ)(1− ρ) + γ(σ − ρ)

(
kt
l̄(ρ)

)α

= kt+1
ht+1

ht
+

[
(1− α)(1− σ)ϕ

α(1− ρ)

] 1
σ

ē(ρ)k
1
σ
t+1. (29)

By substituting (28) into (29), we obtain:

kt+1 =
α(1− ρ)

(1− α)(1− σ)ϕ

{
(1− α)2βδ(σ − ρ)(1− σ)A

[(1 + βδ)(1− ρ) + γ(σ − ρ)][1− σ + α(σ − ρ))]ē(ρ)l̄(ρ)α

}σ

kασt ≡ Φ(kt).

(30)

We define the right-hand side of (30) as Φ(kt). We find that Φ(0) = 0, Φ′(kt) > 0, Φ′′(kt) < 0,

limkt→0Φ
′(kt) = ∞, and limkt Φ

′(kt) → 0. Therefore, the phase diagram is shown in Figure 1.

From Figure 1, the economy converges monotonically to the unique steady state. We define the

steady-state value of kt as k
∗. From (30), we obtain:

k∗ =

(
α(1− ρ)

(1− α)(1− σ)ϕ

{
(1− α)2βδ(σ − ρ)(1− σ)A

[(1 + βδ)(1− ρ) + γ(σ − ρ)][1− σ + α(σ − ρ)]ē(ρ)l̄(ρ)α

}σ) 1
1−ασ

(31)
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From (14), we obtain:

1 + gY,t = (1 + gk,t)
α(1 + gh,t). (32)

where we define 1 + gY,t and 1 + gk,t as 1 + gY,t ≡ Yt+1

Yt
and 1 + gk,t ≡ kt+1

kt
. In the steady state,

gk,t = 0 holds. Therefore, from (33), we obtain:

gY,t = gh,t. (33)

From (28), (31), and (33), the steady-state growth rate gY is given by:

1 + gY = ϕΩ

[
ē(ρ)

(1−α)σ
1−σ Λ(ρ)

] 1−σ
1−ασ

, (34)

where Ω ≡
{
(1− α)2βδ(1− σ)A

[
α

(1−α)(1+βδ)(1−σ)ϕ

]α} 1−σ
1−α−σ

and Λ(ρ) ≡ σ−ρ
[(1+βδ)(1−ρ)+γ(σ−ρ)]1−α[1−σ+α(σ−ρ)]

.

We obtain Proposition 1.

Proposition 1. We define Ψ(ρ, σ) and Υ(σ) as Ψ(ρ, σ) ≡ −α(1− α)(1 + βδ + γ)(ρ− σ)2 − α(1 +

βδ + γ)(1 − σ)(ρ − σ) + (1 + βδ)(1 − σ)2 and Υ(σ) ≡ (1−α)γσ(1+βδ+γσ)[1−(1−α)σ]
γ+βδ(1+δ) , respectively. We

also define σ̄ as the value of σ such that Ψ(0, σ) = Υ(σ) holds. If σ > σ̄, there exists a value of ρ

that maximizes the steady-state growth rate gY .

Proof. See Appendix A.

If ρ increases, government expenditure on education increases. Therefore, human capital accu-

mulation is promoted, and the growth rate increases. However, a higher ρ also reduces disposable

income because taxes are increased to fund government education spending. Therefore, individu-

als’ savings decrease, investment in physical capital declines, and the growth rate falls. Hence, an

increase in ρ has an inverted U-shaped effect on the steady-state growth rate gY .

We obtain Proposition 2.

Proposition 2. As β increases, the scholarship subsidy rate ρ̄ that maximizes the growth rate

decreases.

Proof. See Appendix B.
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As β rises (i.e., present bias decreases), the level of effort put into education, et, increases.

Due to the complementarity of the education production function, investment in education through

goods, xt, also increases. Therefore, goods tend to be used excessively for education. In this case,

the growth rate would increase if the proportion of scholarship subsidies were reduced, the amount

of investment in education xt were moderated, and more resources were allocated to physical capital

investment.

5 Numerical Analysis

In this section, we demonstrate how a scholarship subsidy affects welfare and growth quantitatively.

First, we consider the impact on social welfare, defined as the discounted sum of each generation’s

welfare, as in Grossmann (2007). We numerically show that the subsidy rate that maximizes

economic growth does not necessarily coincide with the subsidy rate that maximizes social welfare.

Second, we demonstrate how changes in the subsidy rate affect each generation’s welfare over time.

We choose the parameters of the model such that the growth rate fits empirical observations for

advanced countries. There are seven structural parameters: {α, β, γ, δ, σ, ϕ,A}. We set the capital

share α to 0.33. As explained earlier, β is the parameter denoting present bias. As β approaches

1, the bias diminishes, implying that the agent becomes more time-consistent. To evaluate how the

magnitude of present bias quantitatively changes the results, we conduct numerical analyses using

various values—specifically 0.6 and 0.7—based on the behavioral economics literature. In line with

Cipriani and Fioroni (2024), we set the weight of leisure in youth and adulthood, γ, equal to 0.2.

We regard one period in this overlapping-generations economy as 25 years and set δ = (0.98)25.

A large number of studies on economic growth in OLG frameworks employ a Cobb-Douglas-type

human capital production function. As most set the elasticity parameter between 0.6 and 1 in

numerical analyses, we adopt an intermediate value of σ = 0.8. Following Cardak (2004), we set ϕ

at 1.6. The remaining parameter, A, is calibrated to match the observed growth rate in advanced

countries. Assuming an annual growth rate of 2%, the corresponding targeted growth rate over 25

years is approximately 1.64.
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5.1 Social welfare

Following Grossmann (2007), we define the social welfare function as

W =

∞∑
t=0

εtVt, (35)

where ε ∈ (0, 1) is the time preference rate of the social planner. In the following numerical analyses,

we adopt an intermediate value, setting ε = 0.5. Substituting solutions (9), (10), (13), and (14)

into (1), we obtain the indirect utility of the t-th generation as follows:

Vt ≡ γ log[1− ē(ρ)] + βγ log[1− l̂(ρ)]− βδ log δ + βδ(1 + δ) log ŝt + βδ2 log R̂t+1. (36)

Substituting (36) into (35) and rearranging the equation, we derive

W =
1

1− ε

{
γ log[1− ē(ρ)] + βγ log[1− l̂(ρ)]− βδ log δ + βδ2 logαA

+βδ(1 + δ) log
(1− α)δ(σ − ρ)Ah0

(1 + δ)(1− ρ) + γ(σ − ρ)
+ βδ[α(1 + 2δ)− δ] log

k̂∗

l̂(ρ)

}

+
βδ(1 + δ)ε

(1− ε)2
log(1 + ĝh), (37)

where h0 denotes the initial value of human capital, and we set h0 = 1.

Figure 2: Numerical examples of social welfare and the growth rate. The horizontal axis represents
the scholarship subsidy ρ ∈ [0, σ). The left and right y-axes represent social welfare and the growth
rate, respectively. The solid line shows social welfare; the dashed line indicates the growth rate.

Figure 2 compares the scholarship subsidy rate that maximizes social welfare with the one that
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maximizes the growth rate. In all three cases, the growth rate exhibits an inverted U-shape, indicat-

ing that a positive subsidy rate maximizes growth. However, social welfare decreases monotonically

with ρ. Therefore, we confirm that the subsidy rate that maximizes economic growth does not

necessarily coincide with the rate that maximizes social welfare.

5.2 Generation’s welfare

We examine the effect of policy changes on each generation’s welfare in this subsection. To evaluate

each generation’s welfare, we take the period of their birth as the reference point. In other words,

the t-th generation’s welfare is measured from the perspective of period t − 1 (young). Therefore,

all variables from period t onward are predicted variables. Substituting (13) and (14) into (36), the

t-th generation’s welfare can be rewritten as follows:

Vt = γ log[1− ē(ρ)] + βγ log[1− l̂(ρ)]− βδ log δ

+ βδ(1 + δ) log

[
(1− α)δ(σ − ρ)A

(1 + δ)(1− ρ) + γ(σ − ρ)

]
ĥt

[
k̂t

l̂(ρ)

]α

+ βδ2 log
[
αAl̂(ρ)1−αk̂α−1

t+1

]
. (38)

Because the predicted value of human capital ht appears in the fourth term of (38), the welfare level

varies across generations. Changes in the subsidy rate ρ influence a generation’s welfare through

three channels: First, they affect the optimal choices of educational effort ē(ρ) and predicted labor

supply l̂(ρ). Second, they alter the predicted value of capital per unit of human capital, k̂∗t . Third,

they impact the growth rate of human capital, gh.

Suppose the economy is in a steady state at time zero. The government raises the scholarship

subsidy from ρ = 0 to ρ = 0.2 at time 1. Figure 3 shows the welfare levels of each generation with

and without the policy change. Regardless of the degree of present bias, increasing the subsidy rate

slightly reduces welfare for the next generation. However, the policy promotes human capital accu-

mulation, resulting in a higher growth rate. Due to this increased growth rate, welfare eventually

exceeds the level observed without the policy change.
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Figure 3: Response to a change in the subsidy rate.

6 Conclusion

We constructed an overlapping-generations model with endogenous education choice and hyperbolic

discounting preferences. We showed that there exists a growth-maximizing subsidy rate for educa-

tional loans. In addition, a stronger present bias raises the growth-maximizing subsidy rate. This

result arises because more impatient agents invest less in education and accumulate less human

capital. Consequently, economic growth declines, requiring higher subsidies to restore it.

Appendix

Appendix A: Proof of Proposition 1

From (34), we obtain:

dgY
dρ

=
(1− σ)ϕΩ

1− ασ

[
ē(ρ)

(1−α)σ
1−σ Λ(ρ)

] 1−σ
1−ασ

{
(1− α)σ

1− σ

ē′(ρ)

ē(ρ)
−
[
−Λ′(ρ)

Λ(ρ)

]}
. (A1)

From (28), we obtain:

(1− α)σ

1− σ

ē′(ρ)

ē(ρ)
=

(1− α)γσ

(1− ρ)[(γ(σ − ρ) + βδ(1 + δ)(1− ρ)σ]
. (A2)

From (A2), the right-hand side becomes (1−α)γ
βδ(1+δ)(1−σ)2

when ρ = σ. In addition, the right-hand side of

(A2) increases monotonically with ρ for 0 < ρ < σ. From Λ(ρ) ≡ σ−ρ
[(1+βδ)(1−ρ)+γ(σ−ρ)]1−α[1−σ+α(σ−ρ)]

and Ψ(ρ, σ) ≡ −α(1− α)(1 + βδ + γ)(ρ− σ)2 − α(1 + βδ + γ)(1− σ)(ρ− σ) + (1 + βδ)(1− σ)2, we
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Figure 4: The shape of Ψ(ρ, σ)

obtain:

−Λ′(ρ)

Λ(ρ)
=

Ψ(ρ, σ)

(σ − ρ)[(1 + βδ)(1− ρ) + γ(σ − ρ)][1− σ + α(σ − ρ)]
. (A3)

The shape of Ψ(ρ, σ) is shown in Figure 4. From the figure, we find that limρ→σ Ψ(ρ, σ) = (1 +

βδ)(1−σ)2. As ρ to σ, the denominator of (A3) approaches zero. Therefore, −Λ′(ρ)
Λ(ρ) → ∞ as ρ → σ.

In addition, the denominator of (A3) decreases monotonically with ρ for 0 < ρ < σ, and from

Figure 4, the numerator increases monotonically. Therefore, the entire expression in (A3) increases

monotonically with ρ in that range. The relationship between (A2) and (A3) is shown in Figure 5.

From the figure, if −Λ′(0)
Λ(0) < (1−α)σ

1−σ
ē′(0)
ē(0) , then −Λ′(ρ)

Λ(ρ) crosses (1−α)σ
1−σ

ē′(ρ)
ē(ρ) from below. From (A2), we

obtain:

(1− α)σ

1− σ

ē′(0)

ē(0)
=

(1− α)γ

γ + βδ(1 + δ)
. (A4)

From (A3), we obtain:

−Λ′(0)

Λ(0)
=

Ψ(ρ, σ)

σ(1 + βδ + γσ)[1− (1− α)σ]
. (A5)
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Λ′(𝜌)
Λ′(𝜌)

𝜌

(1 − 𝛼)𝜎
1 − 𝜎

�̅�′(𝜌)
�̅�′(𝜌)

�̅�

(1 − 𝛼)𝛾
𝛽𝛿 1 + 𝛿 1 − 𝜎 !

Figure 5: The shapes of (1−α)σ
1−σ

ē′(ρ)
ē(ρ) and −Λ′(ρ)

Λ(ρ)

From (A4) and (A5), we obtain:

−Λ′(0)

Λ(0)
<

(1− α)σ

1− σ

ē′(0)

ē(0)
,

Ψ(0, σ) < Υ(σ), (A6)

where Ψ(0, σ) = −α(1− α)(1 + βγ + γ)σ2 + α(1 + βδ + γ)σ(1− σ) + (1 + βδ)(1− σ)2 and Υ(σ) ≡
(1−α)γσ(1+βδ+γσ)[1−(1−α)σ]

γ+βδ(1+δ) . The shapes of Ψ(0, σ) and Υ(σ) are shown in Figure 6. From the figure,

we see that Ψ(0, σ) = Υ(σ) has a unique solution with respect to σ. We define this solution as σ̄.

If σ > σ̄, then there exists a value of ρ that maximizes the steady-state growth rate gY .

Appendix B: Proof of Proposition 2

From (A1), we obtain:

d

dβ

(1− α)σ

1− σ

ē′(ρ)

ē(ρ)
= − (1− α)γδ(1 + δ)σ2

[γ(σ − ρ) + βδ(1 + δ)(1− ρ)σ]2
< 0, (39)
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1 + 𝛽𝛿

0 1

Ψ(0, 𝜎)

𝜎

−𝛼 1 − 𝛼 (1 + 𝛽𝛿 + 𝛾)

𝜎( 1
1 − 𝛼−

1 + 𝛽𝛿
𝛾

Φ(𝜎)

1
2(1 − 𝛼)

Figure 6: The shapes of Ψ(0, σ) and Υ(σ)

From (A3), we obtain:

d

dβ

[
−Λ′(ρ)

Λ(ρ)

]
=

(1 + α)γδ(1− σ)

[(1 + βδ)(1− ρ) + γ(σ − ρ)]2
> 0. (40)

From (39) and (40), we obtain Figure 7. From Figure 7, as β increases, ρ̄ decreases.

0 𝜎

−
Λ′(𝜌)
Λ′(𝜌)

𝜌

(1 − 𝛼)𝜎
1 − 𝜎

�̅�′(𝜌)
�̅�′(𝜌)

�̅� !�̅� "

𝛽 ↑

Figure 7: The effect of β
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