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Abstract

This study proposes a dynamic game of two regional monopolies in the
same industry. It contains two special features: spillovers and time delays
Other than the usual pro�t maximization through a linear price function
in its region, one regional monopoly experiences a cost-increasing spillover
associate with the presence of the other regional monopoly. Each regional
monopoly needs time to produce output and to acquire information on
spillovers. It is demonstrated �rst that the production delay can be a
source of the birth of cyclic oscillations via a Hopf bifurcation. Second,
stability loss and gain repeatedly occur according to the relative magni-
tude between the production and information delays.The number of the
regional monopolies is limited to 2 only for analytical simplicity, and will
be increased to be more than 3 in a future study.
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1 Introduction

The primary motivation for this study can be given as follows. Due to high start-
up costs and signi�cant economic scales, it is often observed in many countries
that industries such as electricity, gas, telecommunications, road, and train net-
works are mostly monopolized. For example, in Japan, those industries started
as public utilities wholly organized by the government; however, they are now
divided up and privatized as regional monopolies to prevent high pricing and
under-supply. In the electricity industry, for example, the country is divided
into nine regions, and one authorized �rm exclusively operates in each region.
Six regional passenger railroad �rms handle all transportation operations con-
cerning the railroad network. The Japan Highway Public Cooperation has been
reorganized into several road companies by regions, and the Nippon Telegraph
and Telephone Public Cooperation has been split up and privatized. To reorga-
nize existing regional monopolies and to improve market e¢ ciency, deregulation
has eliminated barriers to market entry in recent years, and the markets be-
come more "competitive." Nonetheless, the market remains monopolized, with
the authorized �rm occupying more than 80%. It is then supposed that those
regional monopolies supply their products to speci�c locations due to barriers
to competitors and transact only within their regions. The idea we pursue in
the study is, contrary to this traditional assumption of no interdependencies,
that relations among regional monopolies are not seldom.
The division of one major monopoly creates regional monopolies; thus, their

production structures and technologies, working environments, and business
strategies are very similar. Although they are still monopolies in their regions
even after deregulation, they are also competitors in the same industry. Be-
ing interested in technological innovation and the results of R&D(research and
development) others undertake and movements of skilled workers, speci�c know-
how, and customer information others possess, some or all of these regional mo-
nopolies try to move one step forward to take advantage. Since it is di¢ cult to
protect intellectual property, some information on these issues spills over from
one �rm to another for free. Further, we sometimes hear the following: leakage
of top-secrete information, valuable data, unauthorized viewing of customer in-
formation, and taking over skilled workers. Some acquire information in a rather
aggressive manner without transacting through the markets. Overall, there is
a wide variety of spillovers among the regional monopolies; some are bene�cial,
and others are harmful. This study aims to consider an economic situation in
which some regional monopolies in the same industry experience cost-increasing
e¤ects due to unfavorable spillovers.
Bischi and Lamantia (2002) analyze how cost-reduction a¤ects existence

and uniqueness of Nash equailibrium and study the structure of the basins of
two boundedly rational adjustment process in a discrete-time Cournot duopoly
framework. Bischi and Tramontana (2009) consider a three-dimensional discret
dynamic system to describe the interactions among idustrial clusters. Xiao and
Cao (2006) examine stability and Hopf bifurcation in a delayed competitive web
sites model, which is based on the Lotka-Volterra competition equations. Their
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model is three-dimensional and has one delay while our model is two-dimensional
but has multiple delays. Matsumoto and Szidarovszky (2023) construct a two-
market cobweb model having production delay for agricultural goods and infor-
mation delay concerning cross-market prices, and show that the unstable steady
state bifurcates to various dynamics involving chaotic oscillations. Their model
structure is very similar to ours although they consider complementary goods
and we assume (perfectly) substituttional goods.
The rest of this paper is organized as follows. Section 2 constructs a basic

model of regional monopolies in its �rst half and obtain stability conditions
of the model with production delays and without spillover in the second half.
Section 3 considers dynamics with one-way spillover. Section 4 reconstructs the
model in which monopolies are symmetric, having the same production delays
and the same information delays. Section 5 considers the case in which the sum
of the production delays is equal to the sum of the information delays. Lastly
Section 6 is devoted to the concluding remarks and the directions of future
research.

2 Regional Monopolies with Spillover

Let us now construct a model that involves mutual spillovers. Monopoly �rm i
produces some amount of good i denoted as qi and faces a linear price (i.e., an
inverse demand) function,

pi = ai � biqi; ai > 0 and bi > 0: (1)

Suppose that monopoly i�s cost function is

Ci(qi; qj) =
�
ci + ijqj

�
qi:

Here ci is the usual marignal production cost. ijqj is the amount of spillover
that monopoly i undertakes. It a¤ects the cost of monopoly i related to monopoly
j and is assumed to be poportional monopoly j�s production level. The marginal
production cost with respect to qi is

@Ci
@qi

= ci + ijqj :

The marginal cost e¤ect caused by monopoly j is

@Ci
@qj

= ijqi:

Through interdependencies, one monopoly receives a variety of favorable and
harmful spillovers. Taking all spillovers together, we will have two cases de-
pending on which total e¤ects is dominant. If ij > 0, then monopoly j �nally
has a spillover associated with a cost-increasing e¤ect on the monopoly i�s cost
and we call it a adverse spillover e¤ect, and if ij < 0, then monopoly j has a
cost-decreasing e¤ect, and we call it a favorable spillover e¤ect. In this study,
we focus on the adverse spillover e¤ect.
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Assumption 1. ij > 0 and ji > 0: both monopolies receive adverse
spillovers increasing production cost.

The pro�t function is

�i(qi; qj) = (ai � biqi) qi �
�
ci + ijqj

�
qi:

The marginal pro�t is

@�i
@qi

= ai � ci � 2biqi � ijqj :

Then, the optimal output level of regional monopoly i depends on the adverse
spillover from �rm j (i.e., ijqj > 0),

qi = r�i (qj) =
1

2bi

�
ai � ci � ijqj

�
:

In the same way, the optimal output level of regional monopoly j is

qj = r�j (qi) =
1

2bj

�
aj � cj � jiqi

�
:

Solving qi = r�i (qj) and qj = r�j (qi) for qi and qj simultaneously determines
Nash equilibrium outputs,

q�i =
2bjdi � ijdj
4bibj � ijji

and q�j =
2bidj � jidi
4bibj � ijji

(2)

where we follow the traditional assumption that the maximum price is assumed
to be larger than the (pure) marginal cost.

di = ai � ci > 0 and dj = aj � cj > 0.

To focus on the adverse spillover e¤ects and to have positive equilibrium values,
we impose the following:

Assumption 2. min[2bi; 2bj ] > max
�
ij ; ji

�
:

Concerning dynamics of the equilibria, we make two assumptions of the
output adjustment. The �rst one is the gradient method, in which the growth
rate of output is adjusted to be proportional to the marginal pro�t, and the
second is that there are production delays on its own production and information
delays on the other �rm�s production. Hence, the dynamic system is

_qk(t)

qk(t)
= Kk

@�k (qk(t� �k); q�k(t� �k�k))
@qk(t� �k)

for Kk > 0; k = i; j and �k 6= k

or, to be more speci�c,

_qi(t) = Kiqi(t)
�
di � 2biqi(t� � i)� ijqj(t� � ij)

�
;

_qj(t) = Kjqj(t)
�
dj � jiqi(t� � ji)� 2bjqj(t� � j)

�
:

(3)
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Here � i � 0 and � j � 0 are production delays and � ij � 0 and � ji � 0 are
information delays. It can be checked that _qi(t) = _qj(t) = 0 for qk(t � �k) =
qk(t� �k�k) = q�k.
We investigate the local stability of the positive equilibrium point in the

linearized version of the dynamic system,

_qi(t) = ��iqi(t� � i)� �iqj(t� � ij);

_qj(t) = ��jqi(t� � ji)� �jqj(t� � j);
(4)

where new parameters are introduced

�k = Kkq
�
k (2bk) > 0 and �k = Kkq

�
kk�k > 0 for k = i; j and �k 6= k: (5)

Under Assumption 2, it is apparent that

�k � �k = Kkq
�
k (2bk � k�k) > 0:

The associated characteristic equation is

det

�
�+ �ie

��� i �ie
��� ij

�je
���ji �+ �je

���j

�
= 0:

or the equation is organized as�
�+ �ie

��� i
� �
�+ �je

���j
�
� �i�je��(� ij+�ji) = 0: (6)

As for the benchmark, we ascertain the stability condition in the case of no
delays (i.e., � i = � j = � ij = � ji = 0). The characteristic equation of (6) is
reduced to be quadratic in �;

�2 + (�i + �j)�+
�
�i�j � �i�j

�
= 0: (7)

It is well known that the characteristic roots of (7) have negative real parts if
the following two inequalities hold,

�i + �j > 0

and
�i�j � �i�j = KiKjq

�
i q
�
j

�
(2bi) (2bj)� ijji

�
> 0:

The �rst inequality always holds, and so does the second due to Assumption 1.
Therefore, our �rst result is summarized as follows:

Theorem 1 If Assumptions 1 and 2 hold, then the Nash positive equilibrium
outputs are locally asymptotically stable when no delays are involved.

The following point should be noted. The second stability condition always
holds whenever either of ij or ji or both are zero. Hence, we might mention
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that the spillover e¤ect is a destabilizing factor candidate or a destabilizing
ingredient in the sense that a larger ijji might violate the stability condition.
We now detect the e¤ects caused by the production delays on dynamics. To

take away the e¤ects by the information delays, we assume no-spillovers (i.e.,
ij = ji = 0) with which each regional monopoly behaves as a pure monopoly
in its own region. From (2), the optimal monopoly outputs are

qmi =
di
2bi

and qmj =
dj
2bj

where the upper script "m" means "monopoly." The characteristic equation (6)
is reduced to �

�+ �mi e
��� i

� �
�+ �mj e

���j
�
= 0 (8)

where
�mk = Kkq

m
k (2bk) > 0 for k = i; j:

The characteristic equation for monopoly k is

�+ �mk e
���k = 0 for k = i; j (9)

which has been studied in the literature.1 There are two scenarios for instability,
one is that a single real characteristic root becomes positive, and the other is
that a pair of complex roots cross the imaginary axis at the same time. Since
� � 0 does not solve this equation, there is no possibility for the �rst scenario.
Looking for a possibility of the second scenario, we assume � = i! with ! > 0:2

The characteristic equation (9) is transformed to

i! + �mk (cos!�k � i sin!�k) = 0

and is separated into the real and imaginary parts

�mk cos!�k = 0 and �
m
k sin!�k = !:

Adding the squares of these two equations yields

! = �mk > 0:

Solving �k cos!�k = 0 for �k gives rise to the threshold value of �k;3

�mk (n) =
1

�mk

��
2
+ 2n�

�
for k = i; j and n 2 N (10)

for which the characteristic equation has a root with zero real part.
We now turn our attention to the directions of the stability switch. We �rst

assume the characteristic roots as continuous functions in terms of �k; � = �(�k)

1See, for example, Matsumoto and Szidarovszky (2012, 2013).
2We arrive at the same result even if ! < 0 is assumed.
3Solving the other equation, �k sin!�k = ! gives the same threshold value in a di¤erent

form.
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where �k is selected as the bifurcation parameter, and then determine the sign
of the derivative of Re [�(�k)] at the point where �(�k) is purely imaginary.
Di¤erentiation � = �(�k) with respect to �k and arranging the terms present�

1� �mk �ke���k
� d�
d�k

� �mk �e���k = 0:

For convenience, we study (d�=d�B)
�1 instead of d�=d�B�

d�

d�k

��1
=

1

�mk �e
���k

� �k
�
:

The second term is purely imaginary at � = i!. Taking the real part and using
�mk e

���k = �� from (9), we have

Re

"�
d�

d�k

��1�����
�=i!

#
= Re

�
1

�(��)

����
�=i!

�
=

1

!2
> 0:

Therefore, this inequality direction implies that the only crossing of the imagi-
nary axis is from left to right as �k increases.
The positivity signals a potential Hopf bifurcation. The normal form theory

and the center manifold theorem can verify the potentiality, however, we will
numerically con�rm it. To this end, we take the speci�c parameter values in the
following numerical analysis unless otherwise mentioned:

Assumption 3. Ki = Kj = 1; di = dj = 4; bi = bj = 3=2; ij = ji = 1:

Taking ij = ji = 0 but retaining the other parameter values in Assumption
3, we depict the division of the (�1; �2) space for delay monopolies without
spillovers. Both monopolies are stable in the light green region and unstable in
the yellow region in Figure 1(A). One monopolistic �rm is stable, and the other
is unstable in the white region. Figure 1(B) presents a bifurcation diagram of
regional monopoly i�s output with respect to � i 2 [0:3; 0:5]. The black point is
the bifurcation point of (�m�i ; qm�i ).4 The trajectory converges to the equilibrium
qm�i for � i < �m�i and bifurcates to a limit cycle for � i > �m�i via a Hopf
bifurcation. We can see that the Hopf bifurcation is super-critical, and the cycle
gets larger as the value of � i increases further than �m�i . Since the monopolies
are symmetric, we have the same results for monopoly j. We summarize the
results:

4Notice that each monopoly is independent. Regardless of the delay value of the other
monopoly, the bifurcation point is the same where Assumption 3 implies

�m�i =
�

8
' 0:3927 and qm�i =

4

3
:
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Theorem 2 If Assumption 3 hold, and no spillovers, ij = ji = 0; are as-
sumed, then the production delay is harmless for �k < �m�k and can destabilize
the equilibrium to give rise to the birth of a limit cycle for � � �m�k where �m�k
is the minimum value of �mk (n) obtained for n = 0,

�m�k =
�

2�mk
for k = i; j.

(A) Region division (B) Bifurcation diagram

Figure 1. Delay monopolies with no spillovers, ij = ji = 0

After considering the production delay e¤ect, we are now in a position to
examine the information delay e¤ect. To this purpose, going back to linear
system (4), we assume � i = � j = 0 and denote the sum of the information
delays as � = � ij + � ji. The characteristic equation (6) now has the form,

(�+ �i) (�+ �j)� �i�je��� = 0: (11)

For � = i! with ! > 0; as before, the characteristic equation is separated into
the real and imaginary parts,

�!2 + �i�j � �i�j cos!� = 0

and
(�i + �j)! + �i�j sin!� = 0:

Adding the squares of these equations presents a fourth-order equation or a
biquadratic equation in !,

!4 +
�
�2i + �

2
j

�
!2 + (�i�j)

2 �
�
�i�j

�2
= 0;

and its solutions of !2 are

!2� =

�
�
�2i + �

2
j

�
�
r�

�2i + �
2
j

�2 � 4 h(�i�j)2 � ��i�j�2i
2

< 0
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where the inequality is due to the positive discriminant being less than
�
�2i + �

2
j

�
due to one of the stability conditions, �i�j��i�j > 0. Hence, there is no ! > 0
satisfying � = i!. Therefore, no stability switches occur for any � � 0; the
information delays are harmless. We summarize the second results:

Theorem 3 If Assumption 1 holds, and no production delays are assumed,
� i = � j = 0, then the information delays are harmless for any � = � ij + � ji.

In the following, we consider the e¤ects caused by di¤erent types of delays
on dynamics. The characteristic equation (6) involves four di¤erent delays,
� i; � j ; � i + � j and � ij + � ji. It is too complicated to deal with the four delays
simultaneously. To proceed, we make various simplifying assumptions and then
closely look at how the delays a¤ect the otherwise stable equilibrium:

Dynamics I: One-way independency in which assuming �i = 0 or �j = 0
reduces (6) to two one-delay equations with � i or � j :

Dynamics II: Symmetric monopolies in which assuming � i = � j = �A and
� ij = � ji = �B reduces (6) to a two-delay equation with �A and �B :

Dynamics III: Four delays with identical sums of two delays in which assuming
� i+� j = � ij+� ji reduces (6) to an equation with three delays, � i; � j ; � i+
� j :

3 Dynamics I: One-way Dependency

As seen above, a regional monopoly behaves as a pure monopoly if there are
no spillovers. This section introduces one-way spillover from monopoly j to
monopoly i to see how the spillover a¤ects dynamics. With ij > 0 and ji = 0,
the dynamical system (3) becomes asymmetric,

_qi(t) = Kiqi(t)
�
di � 2biqi(t� � i)� ijqj(t)

�
;

_qj(t) = Kjqj(t) [dj � 2bjqj(t� � j)] :
(12)

The positive stationary point of system (12) is a pair of �q�i and �q
�
j such as

�q�i = qm�i � ij
dj
4bibj

< qm�i and �q�j =
dj
2bj

= qm�j : (13)

The spillover has the e¤ect of decreasing the equilibrium output of monopoly
i. This is a natural consequence because a positive ij causes an increase in
the marginal production cost. The characteristic equation (6) with �j = 0 (i.e.,
ji = 0) is reduced to �

�+ ��ie
��� i

� �
�+ ��je

���j
�
= 0 (14)

with
��i = Ki�q

�
i (2bi) < �mi and ��j = Kj �q

�
j (2bi) = �mj :
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The characteristic equation of monopoly k is

�+ ��ke
���k = 0 for k = i; j;

which is formally the same as (9). Following Theorem 2, we can determine the
threshold values,

���i =
�

2��i
> �m�i and ���j =

�

2��j
= �m�j . (15)

Notice that the spillover ij > 0 �rst gives rise to �q�i < qm�i and then leads to
��i < �mi ; which results in the larger threshold value of the production delay,
���i > �m�i . Hence, the spillover has a stabilizing e¤ect in the sense that it extends
the stability region.
With ���i and ��

�
j , we can validate whether the equilibria are stabile or unsta-

ble. They are locally asymptotically stable if

� i < ��
�
i and � j < ��

�
j

and unstable if
� i > ��

�
i and � j > ��

�
j :

It is also clear that the equilibrium output of monopoly i is unstable, and that
of monopoly j is locally asymptotically stable if

� i > ��
�
i and � j < ��

�
j :

We now turn attention to the destabilizing e¤ect of the spillover. For the
remaining delay combination,

� i < ��
�
i and � j > ��

�
j ;

monopoly j�s equilibrium is unstable when monopoly j has a larger delay value
than its threshold value, ���j . This instability of monopoly j spills over to
monopoly i thought ij and destabilizes the equilibrium of monopoly i, al-
though, monopoly i has a smaller delay value than its threshold value, � i < ���i :
This last result is due to the destabilizing e¤ect of the spillover.
Assuming ij > 0 and ji = 0, we numerically con�rm that the spillover has

a doubl-edged e¤ect: the stabilizing e¤ect for enlarging the stability region and
the destabilizing e¤ect for transfomring stability to instability. The stabilizing
e¤ect of the spillover causes the rightward shift of the vertical dotted line at �m�i
to the vertical solid line at ���i (i.e., ��

�
i > �m�i ), implying an expansion of the

shaded light green region in Figure 2(A). The destabilizing e¤ect is visualized
in Figure 2(B). There, choosing the delay values at the red point of � i = 0:2 <
���i and � j = 0:5 > ���j in Figure 2(A) and taking constant initial functions
�k(t) = 0:5 for t � 0, we run the delay system (12) for 0 � t � 10 twice, the �rst
run with ij = 0; and the second with ij = 1. The �rst result is depicted in red
and the second in blue. The two trajectories start at the same point, qi(0): the
red trajectory with no spillover converges to the stationary point, qm�i because
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� i < ��
�
i , whereas, after initial disturbances, the blue trajectory keeps oscillating

around the stationary point, �q�i . The destabilization in j
0s region is imported

to i�s region via ij > 0: Notice that the production delay of � i = 0:2 is positive
but harmless. Accordingly. the destabilizing e¤ect dominates the stabilizing
e¤ect. This dominance takes place for any pairs of the delays in the light blue
and the shaded yellow regions in Figure 2(A). The instability spillover from
monopoly j can be a source of cyclic behavior of otherwise stable monopoly i.
We summarize these spillover e¤ects as follow:

Theorem 4 The one-way spillover (i.e., ij > 0 and ji = 0) has the stabi-
lizing e¤ect and the destabilizing e¤ect on monopoly i: (i) the stabilizing e¤ect
enlarges the stability (i.e., green) region by shifting the partition line rightward;
(ii) the destabilizing e¤ect enlarges the instability (i.e., the light blue and shaded
yellow) regions by making otherwise stable equilibrium unstable and generating
cyclic oscillations.

(A) Space division (B) Cyclic oscillations

Figure 2. Spillover has stabilizing and destabilizing e¤ects

4 Dynamics II: Symmetric Monopolies

In this section, symmetric monopolies are considered, when the model parame-
ters are

ai = aj ; bi = bj ; ci = cj ; ij = ji; Ki = Kj :

Then clearly we have
di = dj and q�i = q�j :

Furthermore,
�i = �j = � and �i = �j = �.

We retain the positive production and information delays, � i > 0; � j > 0; � ij >
0 and � ji > 0 but con�ne attention to the special case,

� i = � j = �A > 0 and � ij = � ji = �B > 0: (16)
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Under these simpli�cations, monopolies are symmetric, and the characteristic
equation (6) becomes �

�+ �e���A
�2 � ��e���B�2 = 0 (17)

which is factorized as�
�+ �e���A + �e���B

� �
�+ �e���A � �e���B

�
= 0:

For convenience, we consider the two equations having the two delays together,

�+ �e���A � �e���B = 0: (18)

Now we follow the method discussed in Appendix A.3 of Matsumoto and Szi-
darovszky (2018), some of which are based on the idea of Gu et al. (2005).
Dividing both sides of (18) by � presents a new form,

1 + a1(�)e
���A + a2(�)e

���B = 0 (19)

where

a1(�) =
�

�
and a2(�) = �

�

�
: (20)

We look for pure complex solutions, � = i! with ! > 0 since � = 0 does not
solve equation (17). Notice that the three complex vectors of (19),

1; a1(i!)e
�i!�A and a2(i!)e�i!�B ;

form a triangle in the complex plane as shown in Figure 3 if and only if the
following triangle conditions hold,

ja1(i!)j+ ja2(i!)j � 1;

and
�1 � ja1(i!)j � ja2(i!)j � 1:

Figure 3. A triangle constructed by three vectors

Substituting � = i! into a1(�) and a2(�) in (19) presents

a1(i!) = �i
�

!
so ja1(i!)j =

�

!
;
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and

a2(i!) = �i
�

!
so ja2(i!)j =

�

!
:

The triangle conditions are written as

0 < �� � � ! � �+ �

where �� � > 0 is due to Assumption 2. The law of cosine can be used to �nd
angles �1 and �2:

�1(!) = cos
�1

 
1 + ja1(i!)j2 � ja2(i!)j2

2 ja1(i!)j

!
;

and

�2(!) = cos
�1

 
1 + ja2(i!)j2 � ja1(i!)j2

2 ja2(i!)j

!
:

Since the triangle can be placed above and below the horizontal axis, we have

arg[a1(i!)]� !�A � �1(!) = �

and
arg[a2(i!)]� !�B � �2(!) = �;

implying that the threshold delay values are obtained as follows:

��A;m(!) =
1

!
[arg[a1(i!)] + (2m� 1)� � �1(!)] for m 2 Z+

and
��B;n(!) =

1

!
[arg[a2(i!)] + (2n� 1)� � �2(!)] for n 2 Z+

where, for ! > 0;

arg[a1(i!)] = �
�

2
and arg[a2(i!)] =

8>>><>>>:
�

2
if a2(i!) = i

�

!
;

��
2
if a2(i!) = �i

�

!
:

Let us denote the interval of ! satisfying the triangle condition by 
 = [� �
�; � + �]. We summarize the results obtained so far: the construction of the
switching curves by the pairs of �A and �B is described in the following:

Theorem 5 The switching curves are constructed by the pairs of �A and �B
belonging to T�m;n(!) where

T�m;n(!) = f
�
��A;m(!); �

�
B;n(!)

���� ! 2 
; m 2 Z+; n 2 Z+g:
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Assumption 3 implies

q�i = q�j = 1; �i = �j = 3 and �i = �j = 1:

Since ij = ji > 0; we see the enlargement of the light green stability and the
shaded yellow regions due to the stability e¤ect of the spillover (i.e., �m�i ! ��A
and �m�j ! ��B). In addition, if there are no information delays, we will see that,
due to the destabilizing e¤ect of the spillover, the equilibrium points are unsta-
ble in the white regions in the upper-left and lower-right parts. However, we
have positive information delays (i.e., � ij = � ji = �B > 0). Although it is shown
in Theorem 3 that the information delay is harmless when the production de-
lays are zero,5 the positive information delays make essential contributions con-
structing the stability switching curve, as shown in Theorem 5. In particular, in

Figure 4(A), the blue segment is described by
n
��A;m(!); �

�
B;n(!)

o
for m = 0; 1

and n = 1 when a2(i!) = �i�=!; and the red segment by
n
��A;m(!); �

�
B;n(!)

o
for m = 1 and n = 0; 1 when a2(i!) = i�=!.6 The stability switching curve is
the left envelope of these red and blue curves. If a point (�A; �B) crosses the
left envelope, then the corresponding pair of characteristic roots cross the imag-
inary axis to the right from the left. Thus, stability switching might occur. As
a result, the stability in the white region to the left of the stability switching
curve is regained. This is because the stabilizing e¤ect of the information delay
dominates the destabilizing e¤ect of the spillover. On the other hand, some
parts of the enlarged light green region in the lower-left lose stability due to the
stronger production delay e¤ect.
The dotted vertical line at �0A = 0:385 crosses the blue segment at points a

and b and the red segment at point c,7

�aB ' 0:418; � bB ' 0:824 and � cB ' 1:205.

Suppose �B keeps moving upward along this vertical dotted line. The stability is
switched to instability (i.e., stability loss and the birth of a limit cycle) at points
a and c, while the instability is switched to stability (i.e., stability gain and the
demise of a limit cycle) at point b: Figure 4(B) illustrates the corresponding
bifurcation diagram with respect to �B ; showing the birth and death of a Hopf
cycle at those points from a di¤erent viewpoint. Between these points, the
destabilizing spillover e¤ect is large enough to generate periodic behavior for
�B 2 (�aB ; � bB), and the stabilizing information delay e¤ect is large enough to
make the stationary point stable for �B 2 [0; �aB) [ (� bB ; � cB).

5The harmless information delay for �A = 0 is graphically established in Figure 4(A) as
the vertical axis at �A = 0 is located to the left of the stability switching curve.

6 Increasing the values of m and n constructs a series of sprial-like curves.
7Since �m�i = �m�j ' 0:3927; the partition line at �m�i is located to the right of the dotted

line at �0A; and the horizontal partition line at �
m�
j is below the dotted horizontal line at �aB :
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(A) Space division (B) Bifurcation diagram

Figure 4. Multiple stability switches

5 Dynamics III: Identical Sums of Two Delays

In this section, we consider the case in which the sum of the production delays
is equal to the sum of the information delays, � i + � j = � ij + � ji. Under this
condition, the characteristic equation (6) is transformed to�

�+ �ie
��� i

� �
�+ �je

���j
�
� �i�je��(� i+�j) = 0 (21)

which is rewritten as

P0(�) + P1(�)e
��� i + P2(�)e

���j + P3(�)e
��(�j+�j) = 0 (22)

where there are three di¤erent delays, � i; � j and � j + � j ;

P0(�) = �2; P1(�) = �i�; P2(�) = �j�; P3(�) = �i�j � �i�j : (23)

Since equation (22) has a more general form than equation (19), the method to
solve (19) is not applicable to (22). Applying the results obtained in Appendix
A.3 of Matsumoto and Szidarivszky (2018), some of which are based on the ideas
of Lin and Wang (2012), we will solve the characteristic equation (22). Before
proceeding, we check the following conditions to guarantee that (22) can be the
characteristic equation of a delay system and to exclude some trivial cases:

(a) There are a �nite number of characteristic roots on C+ (i.e., Re� > 0)
when

deg [P0(�)] � max fdeg [P1(�)] ; deg [P2(�)] ; deg [P3(�)]g :

(b) The zero frequency � = 0 is not a characteristic root with any �1 and �2;

P0(0) + P1(0) + P2(0) + P3(0) 6= 0:
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(c) Polynomials P0(�); P1(�); P2(�) and P3(�) have no common roots.

(d) Pk(�) for k = 0; 1; 2; 3 satisfy

lim

�����P1(�)P0(�)

����+ ����P2(�)P0(�)

����+ ����P3(�)P0(�)

����� < 1:
If (a) is violated, then there are in�nitely many roots with positive real roots,

and no stability is obtained. If (b) is violated, then (21) holds for any (� i; � j) 2
R2+, and therefore the characteristic function is always unstable. Condition (c)
ensures that the considered characteristic equation has the lowest degree and is
irreducible. Condition (d) is to exclude large oscillations. Notice the following:
(a) and (d) hold since P0(�) is quadratic, while P1(�) and P2(�) are linear and
P3(�) is constant; (b) holds since �i�j � �i�j > 0 under Assumption 1; (c) is
trivial. By condition (b), � = 0 does not solve the characteristic equation (6)
with � i+ � j = � ij + � ji, we seek purely imaginary characteristic roots, to study
stability switching.
Since roots of a real function always come in conjugate pairs, we assume

� = i! with ! > 0: Substituting this into (21), we get�
P0(i!) + P1(i!)e

�i!� i
�
+
�
P2(i!) + P3(i!)e

�i!� i
�
e�i!�j = 0 (24)

Since
��e�i!�j �� = 1, we have��P0(i!) + P1(i!)e�i!� i�� = ��P2(i!) + P3(i!)e�i!� i��

which is equivalent to�
P0 + P1e

�i!� i
� �
�P0 + �P1e

i!� i
�
=
�
P2 + P3e

�i!� i
� �
�P2 + �P3e

i!� i
�

where argument i! of Pk is omitted for notational simplicity, and the upper-bar
means conjugate complex number. After arranging the terms, we have

jP0j2 + jP1j2 � jP2j2 � jP3j2 = 2Ai(!) cos!� i � 2Bi(!) sin!� i (25)

Here, Ai(!) and Bi(!) are de�ned as follows,

Ai(!) = Re
�
P2 �P3 � P0 �P1

�
and Bi(!) = Im

�
P2 �P3 � P0 �P1

�
where

P2 �P3 � P0 �P1 = i�i!

�
�j
�i

�
�i�j � �i�j

�
� !2

�
:

Hence,

Ai(!) = 0 and Bi(!) = �i!

�
�j
�i

�
�i�j � �i�j

�
� !2

�
:

Assumption 2 implies �i�j � �i�j > 0, then

Bi(!) R 0 according to ! Q !0 =

r
�j
�i

�
�i�j � �i�j

�
: (26)

Assumption 3 leads to !0 = 2
p
2. Henceforth, we consider two cases, Bi(!) 6= 0

and Bi(!) = 0, separately.
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5.1 Bi(!) 6= 0
We assume Bi(!) 6= 0 (i.e., ! 6= !0) in this subsection and denote the argument
of iBi(!) by �i(!): Formally, we can rewrite Bi(!) as

Bi(!) =
p
Bi(!)2 sin (�i(!))

where

�i(!) = arg [iBi(!)] =

8<: �=2 if Bi(!) > 0 for ! < !0;

��=2 if Bi(!) < 0 for ! > !0:

Hence, the right-hand side of (25) is written as

2
p
Bi(!)2 [cos (�i(!)) cos (!� i)� sin (�i(!)) sin (!� i)]

which the Addition theorem simpli�es as

2
p
Bi(!)2 cos (�i(!) + !� i) :

Let Fi(!) denote the left-hand side of (25),

Fi(!) = jP0j2 + jP1j2 � jP2j2 � jP3j2 :

There exists a � i > 0 with which (25) is written as

Fi(!) = 2
p
Bi(!)2 cos (�i(!) + !� i) (27)

if and only if the following condition holds

jFi(!)j � 2
p
Bi(!)2: (28)

It is more convenient to manage if we square both sides of (28) to have the
following form,

[Fi(!)]
2 � 4Bi(!)2 � 0:

Since the monopolies are symmetric, �i = �j = � and �i = �j = �; the
left-hand side of (25) is factorized as

(! � (�� �)) (! � (�+ �)) (! + (�� �)) (! + (�+ �))
�
!2 � (�2 � �2)

�2
and � > � > 0 by Assumption 2. The last three factors are positive. Therefore,
if ! 2 
 = (�� �; �+ �); then we have

[Fi(!)]
2 � 4Bi(!)2 < 0:

The condition holds with equality when ! = ��� or ! = �+�. We can de�ne
some continuous function  i(!) such that

cos ( i(!)) =
Fi(!)

2
p
Bi(!)2

for  i(!) 2 [0; �] : (29)
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Comparing (27) with (29), we have the following relation,

cos ( i(!)) = cos (�i(!) + !� i)

or the threshold value of � i is obtained as

��i;m(!) =
� i(!)� �i(!) + 2m�

!
for m 2 Z+: (30)

In the same way, we can determine the threshold value of � j . First, we
rewrite equation (21) as

P0(�) + P2(�)e
���j +

�
P1(�) + P3(�)e

���j
�
e��� i = 0: (31)

Repeating the procedure for deriving the threshold value of � i with equation
(30), we obtain the form of �2 for which the characteristic equation has purely
imaginary roots,

��j;n(!) =
� j(!)� �j(!) + 2n�

!
for n 2 Z+ (32)

where

cos
�
 j(!)

�
=
jP0j2 + jP2j2 � jP1j2 � jP3j2

2
p
Bj(!)2

for  j(!) 2 [0; �] ;

Aj(!) = 0 and Bj(!) = �j!

�
�i
�j

�
�i�j � �i�j

�
� !2

�

�j(!) = arg [iBj(!)] =

8<: �=2 if Bj(!) > 0 for ! < !0;

��=2 if Bj(!) < 0 for ! > !0:

It is also con�rmed that

Bj(!) =
q
Bj(!)2 sin

�
�j(!)

�
and ���jP0j2 + jP2j2 � jP1j2 � jP3j2��� � 2qBj(!)2 for ! 2 
:
Summarizing the results, we have the following:

Theorem 6 The following pairs of delays construct the set of all switching
curves ��

��i;m(!); �
�
j;n(!)

� �� ! 2 
	 for m 2 N and n 2 N,
where

��i;m(!) =
� i(!)� �i(!) + 2m�

!
;

��j;n(!) =
� j(!)� �j(!) + 2n�

!
and


 = f! j jFk(!)j � 2
p
Bk(!)2 � 0 for k = i; jg:
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5.2 Bi(!) = 0

!0 is de�ned in (26) and the positive solution of Bi(!) = 0. Then

Ai(!0) = Bi(!0) = 0 =) P2 �P3 = P0 �P1

The right-hand side of (25) is 0 with any � i; and

jP0j2 + jP1j2 = jP2j2 + jP3j3 :

Therefore, all � i 2 R+ are solution of (25) for ! = !0. From (24), we obtain � j
as function of � i;

e�i!�j = �P0(i!) + P1(i!)e
�i!� i

P2(i!) + P3(i!)e�i!� i
: (33)

An explicit form of � j is derived as follows.8 First, Euler�s formula replaces the
exponential terms with the trigonometric terms. Equation (33) is rewritten as

cos!� j � i sin!� j = �
a+ ib

c+ id
(34)

where
a = �i! sin!� i � !2 and b = �i! cos!� i

c =
�
�i�j � �i�j

�
cos!� i and d = �j! �

�
�i�j � �i�j

�
sin!� i:

We rationalize the right-hand side of (34) by multiplying the denominator and
numerator by the conjugate complex number of the denominator,

cos!� j � i sin!� j = �
M

D
� iN

D

or

cos!� j = �
M

D
and sin!� j =

N

D

where
M = ac+ bd, N = bc� ad and D = c2 + d2.

Under Assumption 3,
M = !20 cos (!0� i) ;

N = !0
�
3(8 + !20)� 17!0 sin (!0� i)

�
;

D = 64 + 9!20 � 48!0 sin (!0� i)

and, for � i = 0 and � i = 2�=!0;

�M
D
= � 1

17
' �0:05882 and N

D
=
12
p
2

17
' 0:99827

which are denoted as y0 and y1, respectively.

8 In the same way, it is possible to derive � i(�j) from (31).
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Figure 5(A) illustrates the graphs of �M=D and N=D in red and blue for
� i 2 [0; 2�=!0]; and Figure 5(B) is an enlargement of the congested part of
Figure 5(A). The red curve intersects the horizontal axis twice at points b and
d; at which M = 0 or cos (!0� i) = 0, implying that

� bi =
�

2!0
and �di =

3�

2!0
:

The blue curve also intersects the horizontal axis twice at points a and c at
which N = 0, implying

�ai =
1

!0
sin�1

 
12
p
2

17

!
and � ci =

1

!0

"
� � sin�1

 
12
p
2

17

!#
:

(A) �A 2 [0; 2�=!0] (B) Enlargement

Figure 5. Graphs of �M=D in red and N=D in blue

Those four points divide the interval [0; 2�=!0] into �ve subintervals in which
the signs of sin!0� j and sin!0� j are determined. Accordingly, the form of
� j(� i) in each subinterval is determined:

cos!0� j < 0; sin!0� j > 0 for � i 2 [0; �ai ) =) � j(� i) =
1

!o
cos�1

�
�M
D

�
;

cos!0� j < 0; sin!0� j < 0 for � i 2 [�ai ; � bi ) =) � j(� i) =
1

!o

�
2� � cos�1

�
�M
D

��
;

cos!0� j > 0; sin!0� j < 0 for � i 2 [� bi ; � ci ) =) � j(� i) =
1

!o

�
2� � cos�1

�
�M
D

��
;

cos!0� j > 0; sin!0� j > 0 for � i 2 [� ci ; �di ) =) � j(� i) =
1

!o
cos�1

�
�M
D

�
;

cos!0� j < 0; sin!0� j > 0 for � i 2 [�di ; 2�=!0) =) � j(� i) =
1

!o
cos�1

�
�M
D

�
:

We summarize the results:
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Theorem 7 If Bi(!0) = 0, then the locus of (� i; � j(� i)) for � i 2 [0; 2�=!0] is
the stability switching curve where

� j(� i) =
1

!0
cos�1

�
�M
D

�
for � i 2 [0; �ai ) [ [� ci ; 2�=!0]

and

� j(� i) =
1

!0

�
2� � cos�1

�
�M
D

��
for � i 2 [�ai ; � ci )

In Figure 6(A), as in Figure 4(A), the stabilizing spillover e¤ects make the
rightward and upward shifts of the partition lines, leading to the expansion
of the stability region (i.e., two light green rectangles and the shaded yellow
squares), and the equilibrium points are unstable in the white regions due to the
destabilizing spillover e¤ects if there are no information delays. The egg-shaped
closed curve consists of the blue and red segments. The loci of

�
�+1;m(!); �

�
2;n(!)

�
with m = 0 and n = 1 and

�
��1;m(!); �

+
2;n(!)

�
with m = n = 0 for ! 2 


constructs the blue segment, while the loci of
�
��1;m(!); �

�
2;n(!)

�
for m = 0

and n = 0 constructs the red segment. The upper convex-shaped and lower
concave-shaped black loci of (� i; � j(� i)) for � i 2 [0; 2�=!0] are other segments
of the stability switching curve. The stability region includes the origin and is
surrounded by black and red segments. In this example, the information delays
also have stabilizing and destabilizing e¤ects. The black curves divide the white
regions into two subregions, and instability in the subregion attached to the
enlarged rectangles is switched to stability. On the other hand, the red curve
gouges the upper right portion of the stable region and small parts of the white
region and destabilizes them. In this example. the increased regions are larger
than the decreased regions. Hence, the information delays have the stabilizing
e¤ect all in all.
The horizontal dotted curve at �0j = 0:4 crosses the red curve twice at points

a and b, and the concave-shaped black curve at point c,9

�ai ' 0:386; � bi ' 0:61 and � ci ' 0:648.

Looking at Figures 6(A) and 6(B), we see that, as the value of � i increases along
the horizontal dotted line, the stationary point loses stability at �ai , bifurcates
to a limit cycle for � i 2 (�ai ; �

b
i ); regains stability at �

b
i , remains stable for

9Notice that the horizontal partition line at �m�j ' 0:3927 is located below the horizontal
dotted line at �0j .
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� i 2 (� bi ; � ci ) and then loses stability again at � ci and get no more stability gain.

(A) Space division (B) Bifurcation diagram

Figure 6. Distorted stability region and multiple stability switching.

6 Concluding Remarks

We introduced and analyzed a dynamic model of regional monopolies having
mutual spillovers. The model is simple but plausible for multi-regional monop-
olies in an industry: it contains enough model structure to describe the e¤ects
caused by interdependencies through spillovers, and it is quite natural in light
of what we know about delays in producing output and acquiring information
as a model for the evolution of mutual dependent regional monopolies. Since
the delay dynamic model is a hybrid of discrete-time and continuous-time, it
produces a richer assemblage of dynamics than the continuous-time model. For
example, our analysis shows that due to the complex-shaped pro�le of the sta-
bility switching curveh, repeating stability loss and gain is possible for speci�c
delay ranges. The production delay has a destabilizing e¤ect, and the informa-
tion delay can generate a stabilizing e¤ect. Whether the model is stable depends
on the relative magnitude of these opposite-signed e¤ects, and which e¤ect is
dominant depends on the magnitudes between these delays. However, the larger
delay does not necessarily provide a larger magnitude.
Although we have undertaken a rather thorough investigation of the dynam-

ics under various combinations of four delays, � i, � j , � i + � j and � ij + � ji, our
study has not been exhaustive. It may be too ambitious to attempt the case of
four distinct delays due to a lack of appropriate mathematical methods. The
number of regional monopolies is limited to two only for analytical simplicity.
Only the cost-increasing e¤ects are focused on in this study. Another kind of
spillover can contribute to cost reduction. We hope to modify some of these
limitations in a forthcoming paper.

22



References

Bischi, G.-I., and Tramontana, F., Three-dimensional discrete-time Lotka-
Volterra models with an application to industrial clusters, Communica-
tions in Nonlinear Science and Numerical Simulation, 15, 3000-3014, 2010.

Bischi, G.-I., and Lamantia, F., Nonlinear duopoly games with positive cost
externalities due to spillover e¤ects, Chaos, Solitions and Fractals, 13,
701-721, 2002.

Gu, K., Nicolescu, S.-I., Chen, J. On stability crossing curves for general sys-
tems with two delays, Journal of Mathematics Analysis and Applications,
311, 231-253, 2005.

Lin, X., and Wang, H. Stability analysis of delay di¤erential equations with
two discrete delays, Canadian Applied Mathematics, 20 , 519-533, 2012.

Matsumoto, A., and Szidarovszky, F., Asymptotic dynamics in a multi-market
delayed cobweb model, forthcoming in Computational Economics, 2023.

Matsumoto, A., and Szidarovszky, F. Dynamic Oligopolies with Time Delays,
Springer-Nature, Singapore, 2018.

Matsumoto, A., and Szidarovszky, F. An elementary study of a class of dy-
namic systems with single time delay, CUBO, A Mathematical Journal,
18, 1-7, 2013.

Matsumoto, A., and Szidarovszky, F. Nonlinear delay monopoly with bounded
rationality, Chaos, Solitons and Fractals, 45, 507-519, 2012.

Xiao, M., and Cao, J., Stability and Hopf bifurcation in a delayed competitive
web site model, Physics Letters A, 353, 138-150, 2006.

23


