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Abstract

Under linear price and cost functions, the optimal environmental pol-
icy is determined for duopolies with product di¤erentiation. In the case
of non-point source pollutants, the standard policies cannot be applied
since the government has limited information about the individual emis-
sion, only the total size of the pollution is known. The �rms�decisions
are concerned with their outputs and abatement technologies, while the
government chooses the uniform pollution tax rate. The optimal decisions
are determined in a two-stage process. At the second stage, the �rms de-
termine their outputs, taking the technologies and the tax as given. At
the �rst stage, the �rms select abatement technologies with given the tax
rate, and the government selects optimal tax rate with given choices of
the �rms. Under asymmetric information, the government constructs the
welfare function with uncertainty on the �rms� outputs and determines
the optimal tax rate by maximizing the welfare expectation and mini-
mizing the welfare variance. Since the best reply of the government has
a complicated form, the Nash equilibrium is numerically and graphically
solved. It is shown that the optimal ambient charge tax is less than the
Pigouvian tax. It is also shown that the ambient charge tax e¤ectively
controls the total concentration of NPS pollution.
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1 Introduction

The optimal choice for the environmental policy is well known for two polar
cases of market structure. In a competitive market on one hand, the optimal
pollution tax should be set equal to the marginal damage that pollution causes
(Pigou (1932)). In a monopoly market on the other hand, it is imposed to be
less (Buchanan (1969) and Barnett (1980)). In an oligopoly market, the optimal
choice depends on another market�s characteristics and the optimal tax could
be higher, lower than or equal to the marginal value of the environmental dam-
age. Simpson (1995) shows that the optimal pollution tax rate may exceed the
marginal damage if �rms have di¤erent production costs in a Cournot-duopoly
market without product di¤erentiation. Okuguchi (2003) reconsiders Simpson�s
problem in a general oligopoly market and shows that the optimal tax must
be less than the marginal damage in a special case of identical cost functions
and the magnitude correlation is indeterminate in the general case. Katsoulacos
and Xepapadeas (1995) conclude that the optimal pollution tax falls short of
the marginal social value in an exogenous market structure and could exceed
it in an endogenous market structure in a homogeneous oligopoly. Poyago-
Theotoky (2003) examines the optimal environmental policy in a di¤erentiated
goods duopoly and shows that the emission tax is always lower than the mar-
ginal damage. Fujiwara (2009) considers how product di¤erentiation a¤ects the
optimal pollution tax policies in a free-entry Cournot oligopoly. Lian et al.
(2018) re-investigate the optimal policies in a free-entry oligopoly and �nd that
the optimal tax is always less than the marginal environmental damage. Al-
though choosing the optimal environmental tax depends on various factors, one
common feature of those studies is that pollution is point source (PS). Since PS
pollution has a single discrete source, the government can identify the amount of
pollution contaminations and where it comes from. Regulations can be placed
upon each polluter.
In this paper, we consider the optimal environmental policy for non-point

source (NPS) pollution. It is di¢ cult to identify the sources, the sizes and
the origins of any speci�c NPS pollution. The government can observe only the
ambient concentration of pollutants associated with unobserved individual emis-
sions. Due to informational asymmetries, it is also di¢ cult to apply traditional
environmental policy instruments such as emission taxes or tradable permits for
controlling NPS pollution. Segerson (1988) advocates an ambient scheme in the
form of an ambient tax. Accordingly, the government sets a standard environ-
mental level of pollution and imposes a uniform tax on all possible polluters if
the total concentration is above the standard and provides uniform subsidies if
it is below the standard. Our main question concerns two issues: selecting the
optimal ambient tax rate and con�rming whether the ambient tax can control
pollution. To proceed, we assume a Cournot duopoly in which goods are dif-
ferentiated and production costs are di¤erent. Then we construct a two-stage
game: in the �rst stage, the government sets the optimal tax rate of ambient
charge, and the �rms select their abatement technologies simultaneously and in
the second stage, the �rms determine their outputs.
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The paper is organized as follows. Section 2 builds the basic model. Section
3 provides the results of the government and the �rms at the �rst stage. Section
4 determines Nash equilibrium and presents a comparative analysis. Section
5 considers the ambient tax e¤ects on the ambient concentration. Section 6
presents concluding remarks and outlines further research directions.

2 Basic Model

We consider the following two-stage game between the pro�t maximizing duopoly
�rms and the welfare maximizing government. At the �rst-stage, the govern-
ment sets the ambient charge rate for emissions of NPS pollution. The �rms
decide the levels of the abatement technology. At the second-stage, the �rms
select their outputs, taking the ambient charge tax and the abatement tech-
nologies. As the usual procedure, we solve this two-stage game backwardly. In
this section, the model construction and the analysis of the second-stage will be
done.
We �rst construct a simple Cournot duopoly model. The two �rms indexed

by i and j produce di¤erentiated goods and face linear price (inverse demand)
functions. For �rm i, the price function is

pi(qi; qj) = �i � qi � 
qj (1)

and for �rm j; it is
pj(qi; qj) = �j � 
qi � qj (2)

where qk and �k > 0 are the output and the maximum price of �rm k for k =
i; j: The parameter 
 measures the degree of product di¤erentiation and is sub-
ject to 0 � 
 � 1 in which two goods are substitutes if 0 < 
 < 1; homogenous
if 
 = 1 and independent if 
 = 0.
Pollution is a by-product of the production process. It can be assumed that

one unit of production emits one unit of pollution (after some appropriate choice
of units). Let �k denote the pollution abatement technology of �rm k where
0 � �k � 1 with the pollution-free technology if �k = 0 and a fully-discharge
technology if �k = 1. With �k, �rm k eliminates (1� �k)qk -pollution and thus
discharges �kqk. The government determines an environmental standard level of
pollution, �E; and imposes a uniform tax on the polluters if the concentration is
above the standard and pays uniform subsidies if below. Both �rms have linear
production costs with ci and cj denoting their marginal production costs. We
allow for cost asymmetry (ci 6= cj) and demand asymmetry (�i 6= �j).
Firm k assumes that the competitor will unchange its choice of quantity and

chooses qk to maximize its pro�t de�ned by

�k(qk; �k) = (�k � qk � 
q�k) qk � ckqk � �(1��k)2� �(�kqk +��kq�k � �E): (3)

Here �k means the competitor of �rm k (e.g., if k = i; then �k = j), ck is the
marginal production cost and � is the ambient charge tax rate that will be
often called shortly the ambient tax or the ambient charge hereafter. �(1��i)2
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denotes the installation cost of technology. Notice that � = 0 if the ambient
technology has already been installed and � = 1 if the ambient technology is
a choice variable. The rate � is measured in a monetary unit per emission
(e.g., dollar/ton, yen/kg, etc.). It is positive and can be larger than unity. To
guarantee a positive pro�t in the case of no pollutions, we assume �k > ck. We
state some of these assumptions more formally.

Assumption 1. (1) 0 < 
 < 1; (2) �k > ck for k = i; j:

We start with the analysis of �rm i. At the second-stage, �rm i determines
a production level of output to maximize the pro�t, taking the ambient tax and
its abatement technology as given (i.e., � = 0 in (3)). Di¤erentiating (3) with
respect to qi presents the �rst-order condition for an interior solution,

@�i
@qi

= �i � 2qi � 
qj � ci � ��i = 0: (4)

The �rst-order condition for �rm j is similarly derived. Concavity of the pro�t
functions ensures satisfaction of the second-order conditions for both �rms. The
optimal levels of output can be obtained by solving simultaneously these two
�rst-order conditions, which can be rewritten as

2qi + 
qj = �i � ci � ��i;


qi + 2qj = �j � cj � ��j :
(5)

The di¤erence, �k � ck > 0; is positive due to Assumption 1(2) and it is a
measure of the market size for �rm k. Denoting the di¤erence as �k and solving
(5) yield the following Nash equilibrium quantities at the second-stage:

q�i (�; �i; �j) =
2�i � 
�j � �

�
2�i � 
�j

�
4� 
2 ;

q�j (�; �i; �j) =
2�j � 
�i � �

�
2�j � 
�i

�
4� 
2 :

(6)

Since the denominator of each equation in (6) is positive, the optimal outputs
are non-negative if the numerators are non-negative,

�j � bL(�i) for q�i � 0 and �j � bU (�i) for q�j � 0

where

bL(�i) =
2



�i �

2�i � 
�j

�

and bU (�i) =



2
�i +

2�j � 
�i
2�

: (7)

It is clear that 
=2 < 1 < 2=
 due to Assumption 1(1). We let �0i and �
0
j be the

x-intercept of bL(�i) and the y-intercept of bU (�i);

�0i =
2�i � 
�j

2�
and �0j =

2�j � 
�i
2�

:
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If these intercepts are non-negative, then there is a set of (�i; �j) for which the
outputs in (6) are non-negative. We will con�ne our analysis to the case in
which �i, �j and 
 are subject to the following inequalities:

Assumption 2.



2
�i � �j �

2



�i:

Hence, summarizing the results allow us to state the followings:

Lemma 1 Given Assumptions 1 and 2, the optimal outputs are non-negative,

q�i (�; �i; �j) � 0 and q�j (�; �i; �j) � 0

if the abatement technologies satisfy the following relations,

bL(�i) � �j � bU (�i).

At the second-stage, where the technology levels are �xed, di¤erentiating
the optimal outputs with respect to � reveals that individual output responses
depend on the technology levels and the product-di¤erentiation degree,

@q�i
@�

=

�j � 2�i
4� 
2 and

@q�j
@�

=

�i � 2�j
4� 
2 :

Roughly speaking, the individual responses are non-positive if the �rms have
similar technologies,

@q�i
@�

� 0 and
@q�j
@�

� 0 if 

2
�i � �j �

2



�i (8)

and the �rm with a much more e¢ cient technology positively responses to a tax
change, which is often called a perverse e¤ect of �,

@q�i
@�

> 0 and
@q�j
@�

< 0 if �j >
2



�i

@q�i
@�

< 0 and
@q�j
@�

> 0 if �j <



2
�i:

(9)

Although the e¤ect on the individual responses are indeterminate in general,
(8) and (9) indicate no possibility that both �rms have the perverse e¤ect si-
multaneously. Notice that the government is unable to observe these individual
responses, however, able to observe the total responses. The impact on the total
output is always negative,

@q�i
@�

+
@q�j
@�

= �
�i + �j
2 + 


< 0.

This inequality means that the negative individual response dominates the pos-
itive individual response, irrespective of the technology di¤erences.
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Theorem 1 At the second-stage in which the abatement technologies are given,
the ambient tax is e¤ective in controlling the total amount, E�(�), of NPS pol-
lution,

dE�(�)

d�
< 0

where E�(�) denotes the sum of individual emissions,

E�(�) = �iq
�
i (�; �i; �j) + �jq

�
j (�; �i; �j):

Proof. Di¤erentiating E�(�) with respect to � yields

dE�(�)

d�
= � 2

4� 
2
h�
�i � �j

�2
+ (2� 
)�i�j

i
< 0

where the inequality is due to Assumption 1(1).

3 Optimal Abatement Technology

At the �rst-stage, the �rms and the government make their decisions simultane-
ously. This section concerns �rm�s optimal choice of the abatement technology.
The �rms determine their abatement technologies, �i and �j ; to maximize their
pro�ts, taking � as given. To de�ne the pro�t at the �rst-stage, we substitute
the optimal outputs in (6) into the pro�t function (3) to obtain the reduced
form of �rm i�s pro�t,

��i (�i; �j) =
�
�i � q�i � 
q�j

�
q�i � ciq�i � (1� �i)2 � �

"
2X

k=1

�kq
�
k � �E

#
(10)

where the variables, �; �i; �j ; of the optimal outputs are omitted for notational
simplicity. Di¤erentiating (10) with respect to �i yields the �rst-order condition
for �rm i0s interior optimal solution of the abatement technology,

@��i
@�i

=
@��i
@qi

@q�i
@�i

+
@��i
@qj

@q�j
@�i

+
@��i
@�i

����
q�i ;q

�
j :const

= 0 (11)
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where
@��i
@qi

= �i � 2q�i � 
q�j � ci � ��i = 0;

@��i
@qj

= �
q�i � ��j ;

@q�i
@�i

= � 2�

4� 
2 ;

@q�j
@�i

=

�

4� 
2 ;

@��i
@�i

����
q�i ;q

�
j :const

= 2(1� �i)� �q�i :

Since the further di¤erentiation of the pro�t function yields

@2��i
@�2i

= �2
h�
4� 
2

�2 � (2�)2i ;
the second-order condition (SOC henceforth) holds if

� < ~�(
) =
4� 
2
2

: (12)

Substituting q�i and q
�
j in (6) into (10) and rearranging the terms simplify

the form of the �rst-order condition for �rm i,

2
h�
4� 
2

�2 � (2�)2i�i + �8� 
2� 
�2�j = 4� �
�j � 2�i�+ 2 �4� 
2�2 :
In the same way, the �rst-order condition for �rm j is obtained as�

8� 
2
�

�2�i + 2

h�
4� 
2

�2 � (2�)2i�j = 4� �
�i � 2�j�+ 2 �4� 
2�2 :
These are put in a matrix form,0BB@

2
h
(4� 
2)2 � (2�)2

i �
8� 
2

�

�2

�
8� 
2

�

�2 2

h
(4� 
2)2 � (2�)2

i
1CCA
 
�i

�j

!
=

 
ai

aj

!
(13)

where

ai = 4�
�

�j � 2�i

�
+ 2

�
4� 
2

�2
and aj = 4�

�

�i � 2�j

�
+ 2

�
4� 
2

�2
:
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Solving equation (13) yields the optimal abatement technologies of �rms i and
j,

�ei (�) =
2
n
2�
�
(
A+ 2B)�j � (2A+ 
B)�i

�
+
�
4� 
2

�2
(A�B)

o
A2 �B2

�ej (�) =
2
n
2�
�
(
A+ 2B)�i � (2A+ 
B)�j

�
+
�
4� 
2

�2
(A�B)

o
A2 �B2

(14)

where
A = 2

h
(4� 
2)2 � (2�)2

i
and B =

�
8� 
2

�

�2:

A > 0 and B > 0 by (12), Assumption 1(1) and Theorem 1. The di¤erence
between A and B is

A�B = (2 + 
)
�
4 + 2
 � 
2

� �
��(
)2 � �2

�
with

��(
) =
(2� 
)

p
4 + 2
p

4 + 2
 � 
2
: (15)

It is apparent that A�B > 0 if � < ��(
): Although this inequality condition is
stronger than the SOC, we assume it to make the following analysis simpler:

Assumption 3. � < ��(
) for 
 2 (0; 1).

We check the conditions for 0 � �ei (�) � 1. In the �rst equation of (14), the
denominator is positive by Assumption 3 and the numerator is non-negative if
the blacketed term is non-negative. Solving it for �j , we �nd that �

e
i (�) � 0 if

�j � f1 (�i) (16)

where

f1 (�i) =
2A+ 
B


A+ 2B
�i �

(4� 
2)2(A�B)
2� (
A+ 2B)

:

The inequality of �ei � 1 holds if the denominator is greater than or equal to
the numerator or

�j � f2(�i): (17)

where

f2(�i) =
2A+ 
B


A+ 2B
�i +

�
A+B � 2(4� 
2)2

�
(A�B)

4� (
A+ 2B)
:

Hence �ei is positive and less than or equal to unity if (16) and (17) hold. In
the same way, the conditions for 0 � �ej � 1 can be written as

f1
�
�j
�
� �i � f2

�
�j
�
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or
f�12 (�i) � �j � f�11 (�i) (18)

where

f�11 (�i) =

A+ 2B

2A+ 
B
�i +

(4� 
2)2(A�B)
2� (2A+ 
B)

and

f�12 (�i) =

A+ 2B

2A+ 
B
�i �

�
A+B � 2(4� 
2)2

�
(A�B)

4� (2A+ 
B)

The results concerning the optimal technologies are summarized as follows:

Lemma 2 Given Assumptions 1, 2 and 3, the optimal abatement technologies
are non-negative and not greater than unity,

0 � �ei (�) � 1 and 0 � �ej (�) � 1;

if the following conditions for �i and �j are satis�ed,

f1 (�i) � �j � f2 (�i) and f�12 (�i) � �j � f�11 (�i) :

In Figure 1 with 
 = 0:6 and � = 0:8; Assumption 2 is satis�ed in the gray
region and so are the following inequality conditions in the union of the yellow
and green regions1 ,

0 � �ei (�) � 1 and 0 � �ej(�) � 1:

The lower and upper dashed-blue lines are described by �j = f�12 (�i) and
�j = f

�1
1 (�i) (i.e., �

e
j(�) = 1 and �

e
j(�) = 0) whereas the left and right dashed-

red lines by �j = f2(�i) and �j = f1(�i) (i.e., �
e
i (�) = 1 and �

e
i (�) = 0). Solving

f2(�i) = f�12 (�i) and f1(�i) = f�11 (�i) presents the minimum value �m and
the maximum value �M ;

�m =

�
4� 2
 � 
2

�
�

4
and �M =

(2� 
) (2 + 
)2

2�
:

Substituting �ei (�) and �
e
j(�) of (14) into q

�
i and q

�
j in (6) determines the

optimal production with the optimal abatement technology,

qek(�) = q
�
k(�; �

e
i (�); �

e
j(�)) for k = i; j

that can be written as

qek(�) =
M�k �N��k � L
(4� 
2)(A2 �B2) for k = i; j (19)

where
L = 2(A�B)(2� 
)3(2 + 
)2�;

1The meanings of the color regions are explained shortly below.
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M = 2(A2 �B2) + 4(4A+ 4B
 +A
2)�2;

N = 
(A2 �B2) + 4(4B + 4A
 +B
2)�2:

The lines of qei (�) = 0 and q
e
j (�) = 0 are described by the common boundaries of

the yellow and green regions in Figure 1.2 The non-negativity of qek(�) is ensured
in the yellow region whereas qek(�) is negative in the green region. Notice that
0 � �ek(�) � 1 holds in both regions.

Figure1. Feasible regions of 0 � �ek(�) � 1 and qek(�) � 0 for k = i; j
under 
 = 0:6 and � = 0:8

Some properties of the optimal decisions are examined. From (14), a di¤er-
ence of �ei (�) from �ej(�) depends on the market-size di¤erence,

�ei (�)� �ej(�) = �
4�(2 + 
)

A�B
�
�i � �j

�
:

An output di¤erence can be written as

qei (�)� qej (�) =
(A�B) + 4�2 (2 + 
)
(2� 
) (A�B)

�
�i � �j

�
where the �rst factor on the right-hand side is positive. Those results are sum-
marized:

2The zero production lines are described by

�j =
M

N
�i �

L

N
(i.e., qei (�) = 0)

and

�j =
N

M
�i +

L

M

�
i.e., qej (�) = 0

�
:

Since M > N > 0; the qei (�) = 0 line is steepter than the q
e
j (�) = 0 line.
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Theorem 2 Given Assumptions 1, 2 and 3, the �rm with larger market size
adopts more e¢ cient abatement technology and produces more output, and if the
market sizes are equal, then the two �rms�choices are identical,

�ei (t) S �ej(�) and qei (�) R qej (�) according to �i R �j :

We now turn attention to the e¤ects caused by a change in the ambient
tax on the optimal abatement technology. Di¤erentiating �ei (�) and �

e
j(�) with

respect to � yields

d�ei (�)

d�
= 4

�
4� 
2
A2 �B2

�2 �
`�m�i + n�j

�
d�ej(�)

d�
= 4

�
4� 
2
A2 �B2

�2 �
`�m�j + n�i

� (20)

where

` = (2� 
)(2 + 
)2(4� 2
 � 
2)�
�
2(2� 
)2(2 + 
)� (4 + 2
 � 
2)�2

�2
;

m =
�
4� 
2

� �
m0 �m2�

2 �m4�
4 +m6�

6
�
;

n = 2

�
n0 + n2�

2 � n4�4 � n6�6
�

and the forms of mk and nk for k = 0; 2; 4; 6 are given in the Appendix 1. It is
con�rmed that ` > 0; m > 0, n > 0 and m > n for 0 < 
 < 1 and 0 < � < 2.
Hence the signs of the derivatives are

d�ei (�)

d�
R 0 according to �j R

m

n
�i �

`

n
;

d�ej(�)

d�
R 0 according to �j Q

n

m
�i +

`

m
:

(21)

The inequality m > n implies that the d�ei (�)=d� = 0 line is steeper than the
d�ej(�)=d� = 0 line and both are illustrated as dotted-black lines in Figure 2.
We now examine the ambient e¤ect on the optimal outputs. Di¤erentiating

(19) with respect to � presents the following forms of the derivatives,

dqei (�)

d�
=
2(4� 
2)3

(A2 �B2)2
�
��̀+ �m�i � �n�j

�
;

dqej (�)

d�
=
2
�
4� 
2

�3
(A2 �B2)2

�
��̀+ �m�j � �n�i

� (22)

where the constant term, the coe¢ cients of �i and �j are

�̀=
�
2(2� 
)(2 + 
)2 � (4� 2
 � 
2)�2

� �
2(2� 
)2(2 + 
)� (4 + 2
 � 
2)�2

�2
;

�m = 8�
�
�m0 � �m2�

2 + �m4�
4
�
;

�n = 32
(4� 
2)
�
4(4� 
2)� + 
2�3 � �5

�
11



and the forms of �mk for k = 0; 2; 4 are also given in the Appendix 1. It is
con�rmed that �̀> 0; �m > 0, �n > 0 and �m > �n for 0 < 
 < 1 and 0 < � < 2.
Hence the sigh of the derivatives are

dqei (�)

d�
R 0 according to �j S �gi(�i) =

�m

�n
�i �

�̀

�n
;

dqej (�)

d�
R 0 according to �j = �gj(�i) =

�n

�m
�i +

�̀

�m
:

(23)

The inequality �m > �n implies that the dqei (�)=d� = 0 line is steeper than the
dqej (�)=d� = 0 line and both are illustrated as two dotted-red lines in Figure 2.
As a result, the yellow region in Figure 2 is divided into 9 subregions and each
subregion is numbered.3

Figure 2. Division of the yellow region by the dotted-black lines of d�ek=d� = 0
and the dotted-red lines of dqek=d� = 0 for k = i; j where 
 = 0:4 and � = 0:8

4 Ambient Charge E¤ects on Pollution

In this section we raise a question on whether the ambient charge can control
the individual and total amount of NPS pollution. The individual emission is
de�ned as

Eek(�) = �
e
k(�)q

e
k(�) for k = i; j (24)

and the ambient charge e¤ect is obtained by di¤erentiating Eek(�) for �;

dEek(�)

d�
=
d�ek(�)

d�
qek(�) + �

e
k(�)

dqek(�)

d�

3The quadrangle in the lower-left corner of the yellow region is marked "*", meaning "9"
where its size is too small to write "9."
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where the signs of the derivatives in each subregion are summarized in Table 1
in which Rn means the subregion with number n in Figure 2. We then have the
followings:

(1) In R1; the ambient charge is e¤ective for both �rms,

dEei (�)

d�
< 0 and

dEej (�)

d�
< 0:

(2) In addition, it is e¤ective for �rm i in R3 and R8 while it is e¤ective for
�rm j in R4 and R7.

(3) There is no possibility that an increase in the ambient charge increases
individual emissions of both �rms,

dEei (�)

d�
> 0 and

dEej (�)

d�
> 0:

R1 R2 R3 R4 R5 R6 R7 R8 R9
d�ei=d� � � � � + � + � +
dqei =d� � + � + � + � � �
dEei =d� � ? � ? ? ? ? � ?

d�ej=d� � � � � � + � + +
dqej=d� � + + � + � � � �
dEei =d� � ? ? � ? ? � ? ?

Table 1. Summary of the individual responses in the yellow regions

Concerning the ambient charge e¤ect on the total emission, we �nd one clear
result from Table 1 that it is e¤ective in R1 and seems to be ambiguous in any
other regions. To proceed further, we consider the e¤ect from a di¤erent view
point. Since the total emission is de�ned as the sum of the individual emissions,

E(�) = Eei (�) + E
e
j (�); (25)

the derivative of E(�) with respect to � describes the ambient charge e¤ect on
the total amount that has, after arranging the terms, the following form,

dE(�)

d�
= 4

G
�
�i; �j ; 
; �

�
[F (
; �)]

3 (26)

where G
�
�i; �j ; 
; �

�
and F (
; �) have the following forms,

A (
; �)
�
�2i + �

2
j

�
+B (
; �)

�
�i + �j

�
+ C (
; �)�i�j +D (
; �) (27)
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and�
2(2� 
)2(2 + 
)�

�
4 + 2
 � 
2

�
�2
� �
2(2� 
)(2 + 
)2 �

�
4� 2
 � 
2

�
�2
�
(28)

The full forms of A (
; �),B (
; �), C (
; �) andD (
; �) are provided in Appendix
2 as they are too long to present here.
The denominator of (26) is positive because F (
; �) is positive under As-

sumption 3 and the following inequality,

� < ��(
) <
(2 + 
)

p
4� 2
p

4� 2
 � 
2
:

Although the numerator, G
�
�i; �j ; 
; �

�
; has a long and clumsy form, we will

show its negativity by taking a step-by-step approach. We give an outline of our
approach. At the �rst step, we transform G

�
�i; �j ; 
; �

�
to a quadratic form in

�i and denote it as gi(�i),

gi(�i) = Ai (
; �)�
2
i +Bi (
; �)�i + Ci (
; �) (29)

with Ai (
; �) < 0 and Ci (
; �) < 0: At the second step, we show that the
discriminant of gi(�i) is factored as

Di (
; �) = K (
; �) gj(�j) with K (
; �) > 0 (30)

where gj(�j) is quadratic in �j ;

gj(�j) = Aj (
; �)�
2
j +Bj (
; �)�i + Cj (
; �) (31)

with Aj (
; �) < 0 and Cj (
; �) < 0. The forms of Aj (
; �) ; Bj (
; �) and
Cj (
; �) are given in Appendix 3. Finally, at the third step, we establish that the
discriminant of gj(�j) is negative. We then trace back each step. In particular,
gj(�j) < 0 implies Di (
; �) < 0 through (30). Then this negative discriminant
with Ai (
; �) < 0 and Ci (
; �) < 0 leads to gi(�i) < 0 or G

�
�i; �j ; 
; �

�
< 0

through (29). We follow the approach more precisely in Appendix 4. These
results lead to the following:

Theorem 3 Under Assumptions 1, 2 and 3, the ambient charge is e¤ective in
controlling the total amount of NPS pollution,

dE(�)

d�
< 0 :

In Figure 3 with 
 = 0:6 and � = 0:8, the red surface is described by
dE(�)=d� and is located below the upper surface of the cube. The dark yellow
quadrangle on the bottom surface is the feasible region of the optimal abate-
ment technologies over which the red surface is illustrated. It is seen that the
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maximum value of dE(�)=d� de�ned over the feasible region of �i and �j is
negative, numerically con�rming the analytical result in Theorem 3.

Figure 3. Contorollability of the ambient
charge.

5 Optimal Ambient Tax

In this section, we consider how the government determines the ambient tax.
Taking the optimal outputs obtained at the second-stage as given, the govern-
ment constructs the social welfare function,

W (�) = CS(�) + PS(�) + T (�)�D(�) (32)

where CS(�), PS(�), T (�) and D(�) stand for consumer surplus, producer sur-
plus, tax collected with pollution emission and the damage caused by NPS
pollutions, respectively. The price functions (1) and (2) are obtained by maxi-
mizing the utility function,

U(qi; qj ;m) = �iqi + �jqj �
1

2

�
q2i + 2
qiqj + q

2
j

�
+ x

subject to the budget constraint, piqi + pjqj + x = I where x denotes the
numeraire good. Hence, the consumer surplus is

CS(�) = U(q�i ; q
�
j ;m)� I

15



where the right-hand side is

(�i � p�i ) q�i +
�
�j � p�j

�
q�j �

1

2

h
(q�i )

2
+ 2
q�i q

�
j +

�
q�j
�2i

:

The producer surplus is the sum of the pro�ts gained by the two �rms,

PS(�) = ��i (�) + �
�
j (�)

=

jX
k=i

(p�k � ck) q�k � 2�
�
�iq

�
i + �jq

�
j � �E

�
:

The tax revenue is
T (�) = 2�

�
�iq

�
i + �jq

�
j � �E

�
The damage function is assumed to be linear in the total emission,

D(�) = �
�
�iq

�
i + �jq

�
j

�
where � > 0 measures the marginal damage degree. With substitutions and
arrangements, the welfare function is reduced to the form,

W (�) = (�i � ��i) q�i +
�
�j � ��j

�
q�j �

1

2

h
(q�i )

2
+ 2
q�i q

�
j +

�
q�j
�2i

: (33)

In the literature of NPS pollution, the government is assumed not to measure
the exact levels of �rms�productions due to information asymmetry. Here we
assume that the government is able to measure their uncertain levels,

q�i + "i and q
�
j + "j

where "i and "j are random variables and assumed to satisfy the followings:

Assumption 4. "i = "j = ", E(") = 0 and V ar(") = �2:

The random welfare function has the form,4

W"(�) = (�i � ��i) (q�i + ") +
�
�j � ��j

� �
q�j + "

�
�1
2

h
(q�i + ")

2
+ 2
 (q�i + ")

�
q�j + "

�
+
�
q�j + "

�2i
:

The right-hand side is rewritten as

W (�) +
��
�i + �j)� �(�i + �j

��
"� (1 + 
)

�
q�i + q

�
j

�
"� (1 + 
) "2: (34)

4Since the total amount of pollution is

�i(q
�
i + ") + �j(q

�
j + ") = �iq

�
i + �jq

�
j +

�
�i + �j

�
";

the government can observe the total amount with a random error
�
�i + �j

�
".
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Notice that W"(�) =W (�) if the variance is zero (that is, perfect knowledge on
the outputs). The expectation of W"(�) is

E [W"(�)] =W (�)� (1 + 
)�2 (35)

and the variance is

V ar [W"(�)] = E
h
(W"(�)� E [W"(�)])

2
i

(36)

where the right-hand side is expanded as�
�� (1 + 
)

�
q�i + q

�
j

��2
E("2) + (1 + 
)

2 �
E
�
"4
�
� �4

�
�2(1 + 
)

�
�� (1 + 
)

�
q�i + q

�
j

��
E
�
"3
�

with � = (�i + �j)� �(�i + �j).
For given �i and �j , the government considers the problem of choosing �

with which the welfare expectation is maximized and the welfare variance is
minimized. For this purpose, it de�nes the composite welfare function,

!(�) = E [W"(�)]� �V ar [W"(�)] (37)

where � � 0 denotes the subjective importance of the variance in comparison
to expectation. The �rst-order condition for interior optimum reads�

dW (�)

dqi

dq�i
d�

+
dW (�)

dqj

dq�j
d�

�
� �dV ar [W"(�)]

d�
= 0 (38)

where the derivative of V ar [W"(�)] is simpli�ed as

�2
�
(1 + 
)�2

�
�� (1 + 
)

�
q�i + q

�
j

��
� (1 + 
)2E

�
"3
���dq�i

d�
+
dq�j
d�

�
:

The �rst-order condition (38) can be rewritten�
dW (�)

dqi
+ 2�

�
(1 + 
)�2

�
�� (1 + 
)

�
q�i + q

�
j

��
� (1 + 
)2E

�
"3
��� dq�i

d�
+

�
dW (�)

dqj
+ 2�

�
(1 + 
)�2

�
�� (1 + 
)

�
q�i + q

�
j

��
� (1 + 
)2E

�
"3
��� dq�j

d�
= 0:

Solving it for � yields the best reply of the government, �e
�
�i; �j

�
that has the

form,

(ki + k0)�i + (kj + k0)�j + k1

h
�2i � 
�i�j + �2j + k2

�
�i + �j

�2i
2
3�i�j + (4� 3
2)

�
�2i + �

2
j

�
+ 2�(2� 
)2(1 + 
)2�2

�
�i + �j

�2 (39)
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where

ki = 4
�j � (4 + 
2)�i;
kj = 4
�i � (4 + 
2)�j ;
k0 = 2�(2� 
)2(1 + 
)

�
(2 + 
)E("3)� �2

�
�i + �j

��
;

k1 = 2�(2� 
)(2 + 
);
k2 = ��2(2� 
)(1 + 
):

6 Nash Equilibrium

This section is divided into two subsections. In the �rst subsection, Nash so-
lutions are obtained and in the second subsection, the comparative statics is
considered.

6.1 Determination of Nash Solutions

The �rms�best reply functions are �ei (�) and �
e
j(�) in (14) where the ambient

tax is given. On the other hand, �e(�i; �j) in (39) is the government�s best
reply function, taking the technology levels as given. Solving these equations
represents the Nash solutions of the ambient charge and the abatement tech-
nology. However, �e(�i; �j) has a complicated form that prevents from gaining
a general solution. To proceed, at the expense of the generality, we, �rst, add
an assumption on the government uncertainty. As can be seen in the de�nition
of k0, E("3) is an uncertainty e¤ect on the government decision on the ambient
charge, and its value depends on the form of the density function of the random
variable. It is assumed that E

�
"3
�
= 0 as it holds for any distribution being

symmetric around zero. As can be seen in (39), a non-zero E
�
"3
�
just shifts

the government�s best reply up or down and thus does not change the determi-
nation of the Nash solution drastically. Second, we specify the values of some
parameters. These simpli�cations are summarized:

Assumption 5. � = 1=4; 
 = 3=5, � = 1, � = 1 and E
�
"3
�
= 0:

Under Assumption 5, the form of the government�s best reply is simpli�ed
as

182
�
3�2i + �i�j + 3�

2
j

�
+ 5

�
8�j � 57�i

�
�i + 5

�
8�i � 57�j

�
�j

261�2i + 262�i�j + 261�
2
j

. (40)

Substituting �ei (�) and �
e
j(�) into �

e(�i; �j) and subtracting it from � present
an equation in �;

� � �e
�
�ei (�); �

e
j(�)

�
= 0: (41)
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Solving this equation presents a Nash solution of the ambient charge tax. Using
the form of (40), we can rewrite the left-hand side of (41),

� � �e
�
�ei (�); �

e
j(�)

�
=

P'(�)

261�2i + 262�i�j + 261�
2
j

where
P =

182�
3014284� 1820000�2 + 184525�4

�2 ;
'(�) = A7�

7 +A6�
6 +A5�

5 +A4�
4 +A3�

3 +A2�
2 +A1� +A0 (42)

and the coe¢ cient forms are provided in Appendix 5.
Taking �j = 2; we determine the Nash solution of � in Figure 4. The grey

region is de�ned for � � ��(
) and eliminated for further consideration because
Assumption 3 is violated there. Three di¤erent colored regions have the follow-
ing constraints,

0 � qei and 0 � qej in the yellow region,

0 � �ei � 1 in the union of the yellow and green regions,

0 � �ej � 1 in the union of the yellow, green, and light green regions.

In the yellow region without boundaries, the optimal abatement technology is
positive and less than unity, and the optimal outputs are positive,

0 < �ei < 1; 0 < �
e
j < 1; 0 < q

e
i and 0 < q

e
j : (43)

The black curve describes the '(�) = 0 locus. Hence, the optimal ambient tax
rate takes place along the black curve within the yellow region. This segment
starts at N0 and ends at N4 where the coordinates are

�N0
i ' 1:054 and �N0 ' 0:574 at point N0

and
�N4
i = 3:2 and �N4 = 0 at point N4.

The optimal ambient tax is uniquely determined for any �i 2 (�N0
i ; �N4

i ). With
this optimal value of �; the �rms select the optimal abatement technologies
through equations in (14) and then the optimal outputs through equations in
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(19).

Figure 4. Nash solutions of � for �j = 2

We numerically con�rm the optimal solutions. To this end, in addition to
N0 and N4, we select three points N1; N2, N3 where the values of �

Nk
i at points

Nk are
�N1
i = 1:5; �N2

i = 2, �N3
i = 2:5,

and calculate the corresponding solutions for (�i; �j) = (�Nk
i ; 2) with k =

0; 1; 2; 3; 4: The solutions are summarized in Table 2 where

Qe = qei + q
e
j and E =

X
k

�ekq
e
k

�i �e �ei �ej qei qej Qe E �ei �ej
1:05 0:594 0:979 0:714 0:0 0:788 0:788 0:563 0:259 1:133
1:5 0:387 0:915 0:833 0:353 0:733 1:086 0:934 0:268 0:771
2:0 0:243 0:904 0:904 0:685 0:685 1:369 1:239 0:552 0:552
2:5 0:132 0:927 0:953 0:998 0:638 1:636 1:532 1:041 0:415
3:2 0:0 1:0 1:0 1:429 0:571 2:0 2:0 2:041 0:327

Table 2. Summary of the numerical results

Since the optimal values of � are less than unity and the marginal damage
� is taken to be unity in Assumption 5, the optimal ambinet tax in our model
is less than the Pigouvian tax and the di¤erence between �e and � gets larger
as the market size becomes larger. Notice that optimal solutions of �ek and q

e
k

for k = i; j satisfy the inequality conditions in (43). Fixing the market size of
�rm j at �j = 2; �rm i increases its market size in four steps from �N0

i to �N4
i .

At point N0 where the zero-production curve of �rm i intersects the '(�) = 0
curve, �rm i produces no output, and the market is monopolized by �rm j.
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At point N2 with �i = 2; the two �rms are identical, taking the same level of
the ambient technology and producing the same amount of output. Along the
segment between N0 and N2; �rm j has a larger market size (i.e., a dominant
�rm) produces more output and uses a more e¢ cient abatement technology.
On the other hand, along the segment between N2 and N4; �rm i becomes a
dominant �rm, making larger production and adopting a better technology. At
the point N4, no ambient tax rate is imposed and thus, as a natural consequence,
the �rms fully discharge emissions.

6.2 Comparative Statics

We can con�rm the ambient charge e¤ects on the various variables. Observing
Table 2 from the bottom raw to the top raw, we �nd various reactions of the
�rms when the ambient tax increases from zero. Firm i produces less output and
decreases its pro�t while it �rst uses a better abatement technology but later
switches it to a worse one. On the other hand, �rm j produces more output,
takes a better technology and increases its pro�t. Hence, for �rm i

�qei
��

< 0;
��ei
��

Q 0 and ��
e
i

��
< 0

where � denotes a change in a variable and �x=�y > 0 (respectively, < 0)
menas that the direction of a change in y is the same as (respectively, opposite
to) the direction of a change in x. For �rm j,

�qej
��

> 0;
��ej
��

< 0 and
��ej
��

> 0:

Although the directions of output change for the two �rms are opposite, the
total amount of output and the total concentration of pollution decline,

�Qe

��
< 0 and

�E

��
< 0

where the last result is analytically shown in Theorem 3.
We now consider the e¤ects caused by changes in the market size of �rm

j. In Figure 5(A) in which the value of �j is dropped to 1 from 2, it is ob-
served �rst that the triangle-shaped yellow region shrinks and second that the
black curve of '(�) = 0 shifts upward. In consequence, the feasible black curve
located in the yellow region is a segment between the two black dots. Hence,
the feasible interval of �j and the corresponding interval of the abatement tax
become smaller and the optimal value of the ambient tax is determined to be
higher. On the other hand, in Figure 5(B) in which the value of �j rises to
3:05 from 2; the shape of the feasible region is rather distorted because the size
correlation among the three sets are ambiguous. It is seen that some segment
of the black curve is in the upper green region that is outside the light green
region. Some other segment is in the upper light green region that is outside the
green region. Along with those segments of the black curve, the ambient tax
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can be determined, however, the corresponding �ek may be negative or greater
than unity. The feasible region of (�i; �) in which all inequalities in (43) holds
is colored in light blue. Only the solution along the segment between N0 and
N1 corresponds to Nash solutions of �: It is seen that the optimal ambient tax
decreases due to the larger market size of �rm j. The negative market size e¤ect
for �rm i is already observed in the �rst two columns of Table 2. Comparing
Figure 4 with Figures 5(A) and 5(B), we summarize the main results:

Summary 1 (1) Under Assumption 5, the optimal ambient tax rate exists as a
solution of the two-stage game and is less than the Piguvian tax where � = 1: (2)
The market size e¤ect is negative since the larger market size induces decline
of the optimal ambient tax. (3) The higher the ambient tax, the lower the total
amounts of output and pollution.

(A) �j = 1 (B) �j = 3:05

Figure 5. E¤ects of changing the market size, �j , of �rm j

Let us consider the e¤ects caused by a change in � (i:e:; the coe¢ cient
of V ar [W"(�)]) in the composite welfare function in (37)). In Figure 6, for the
benchmark case with Assumption 5 and �j = 2, the '(�) = 0 curve is illustrated
in dotted black and so are the curves of qei (�) = 0 and q

e
j (�) = 0 in dotted red,

respectively. The value of � is increased to 1 from 1=4. The '(�) = 0 curves with
the new � are depicted as solid black curves while the change in � does not a¤ect
the zero-production curves and the size of the yellow region. The dotted and
solid black curves in the yellow regions are almost the same, although slightly
lower departure of the black curve from the dotted black curve is observed in the
neighborhood of the crossing point with the positive-sloping dotted red curve.
It can be mentioned that an increase in � decreases the optimal value of the
ambient charge tax rate. Hence, a change in � positively a¤ects the Nash values
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of the ambient tax and other variables but only in limited amounts.

Figure 6. E¤ects of � when � increases to 1 from 1=4

We now turn attention to the e¤ects caused by a change in the degree of
production di¤erentiation when the value of 
 rises to 4=5 from 3=5. All inequal-
ities in (43) hold in the feasible region. The feasible regions under Assumption
5 is a union of the yellow and orange regions in Figure 7. The increased value of

 shrinks the yellow region to the orange region, and enlarges the gray region.
The segment of the black curve in the feasible region shifts upward. Therefore,
a larger value of 
 gives rise to a higher ambient charge tax, which is still less
than the Pigouvian tax rate. A di¤erence between the optimal ambient tax rate
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and the Pigouvian tax rate becomes smaller as 
 increases.5

Figure 7. E¤ects of 
 when 
 increases to 4=5 from 3=5

Let us next consider how the optimal ambient tax rate reacts when the value
of the damage coe¢ cient, �, changes. We consider two cases, � is, �rst, increased
to 1:5 from 1 and then to 1:75. In Figure 8, the yellow region is independent
of � and thus remains the same. However, increasing the value of � shifts the
segment of the black curve upward. With the �rst increment of �; the feasible
segment of '(�) = 0 is transferred to the solid curve from the dotted curve. In
consequence, we observe that the optimal value of � increases, and the feasible
region of �i is extended. Hence, larger marginal damage induces a larger value
of the ambient tax rate. Further, the negative-sloping segment implies that the
larger market size makes the optimal value of the ambient tax rate smaller.
Those responses are the same as the results obtained shown in Figures 6 and 7
when � and 
 are changed. Before proceeding to the second increment, we sum
up the results obtained so far:

Summary 2 A decrease in �, an increase in 
 or a small increase in � shifts
the '(�) = 0 curves upward and increases the optimal value of the ambient
charge tax rate.

The second increment of � causes a qualitatively di¤erent change to the shape
of the '(�) = 0 curve, which is illustrated by the red-green curve in Figure 8.
The '(�) = 0 curve becomes a closed curve and thus has positive sloping parts,
as illustrated in red. As a result, solving '(�) = 0 for � yields multiple (actually,
two) solutions for �i 2 (�ai ; �bi ). We numerically check possible results caused

5 It was checked that the optimal ambient tax is smaller than unity even when 
=1, the
maximum value of 
.
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by the larger change of �.

Figure 8. E¤ets of � when � increases to 1:5 and then to 1:75 from 1

First of all, notice that the loci of '(�) = 0 with di¤erent values of � pass
through the common point of �i = 2 and � = �� as seen in Figure 8. Returning
to (15), we see that A � B = 0 for � = �� and thus the optimal values of the
abatement technologies in (15) and the optimal outputs are not de�ned there.
Hence, this point is eliminated in the following considerations. We select several
points of �i out of the interval [�

a
i ; �

b
i ] and then calculate the optimal values

of the abatement technology and the output. Using the same procedure above,
we could summarize the numerical results in a table similar to Table 2. Instead
of doing so, we graphically considere them to take care of the discontinuous
changes of the variables at the critical point, (2; ��). The blue and magenta
curves in Figures 9(A) and 9(B) describe the loci of �ei and �

e
j and the loci

of qei and q
e
j against the selected values of �i: The solid and dotted curves are

obtained along the lower and upper half of the closed red-green curve.
We start to consider �rm i�s behavior along the lower half of the closed curve.

Firm i�s optimal choices of �i and qi are described by the solid blue curves. The
solid blue curve is negative-sloping in Figure 9(A) and positive-sloping in Figure
9(B). Since the optimal ambient tax rate is negatively related with the market
size �i along the lower half,

6 increasing �i leads to a fall of the ambient tax
rate that then induces �rm i take a more-abated technology (i,e., ��ei < 0) and
produce more output (i.e., �qei > 0). The ambient charge e¤ects on �

e
i and q

e
i

are obtained,

��ei
��i

=
��ei
��

��e

��i
(�)

< 0 =) ��ei
��

> 0 and
�qei
��i

=
�qei
��

��e

��i
(�)

> 0 =) �qei
��

< 0:

6We do not select �i from the red part at the lower-left only for analytical simplicity.
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Firm j�s optimal behavior is desribed by the solid magenta curves. The solid
magenta curve is positive-sloping in Figure 9(A) and negative-sloping in Figure
9(B). ��e=��i < 0 is already checked. Hence, increasing �i leads to a fall of
the ambient tax rate that then induces �rm j take a less-abated technology (i.e.,
��ei > 0) and produces less output (i.e., �q

e
j < 0). The ambient charge e¤ects

on �ej and q
e
j are also obtained,

��ej
��i

=
��ej
��

��e

��i
(�)

> 0 =)
��ej
��

< 0 and
�qej
��i

=
�qej
��

��e

��i
(�)

< 0 =)
�qej
��

> 0:

Those results allow us to state the following:

Summary 3 When the value of �i increases from �ai to �
b
i ; the ambient tax

decreases along the lower half of the '(�) = 0 closed curve. Accordingly, �rm
i adopts the more-abated techonology and produces more output whereas �rm j
adopts the less-abated techonology and produces less ouput,

��ei
��

> 0 and
�qei
��

< 0; and
��ej
��

< 0 and
�qej
��

> 0.

We now turn attention to the �rms�s behavior along the upper half of the
closed curve. In Figure 8, it is seen that the red part is de�ned for �ai � �i < 2
and positive-sloping (i.e., ��e=��i > 0), and the remaining green part is de�ned
for 2 < �i � �bi and negative-sloping (i.e., ��

e=��i < 0). The dotted blue
curve is positive-sloping in Figure 9(A), negative-sloping in Figure 9(B) and
discontinuous at �i = 2. When the market size becomes larger, the ambient tax
rate also increases. Accordingly, �rm i takes a less-abated technology, getting
closer to full-charge and produces less output for �i < 2 but suddenly switch
it to a high-e¢ cient technology and produces a larger amount of output just
when �i becomes larger than 2: Then, a less-abated technogoy is used and more
output is produced as �i further increases to �

b
i . Hence, �rm i�s responses are

summarized as follows,

��ei
��

> 0 and
�qei
��

< 0 for �ai � �i < 2

and
��ei
��

< 0 and
�qei
��

< 0 for 2 < �i � �bi :

The dotted magenta curve is negative-sloping in Figure 9(A), positive-sloping
in Figure 9(B) and becomes discontinuous at �i = 2. When the ambient tax rate
increases, �rm j adopts a more-abated technology and produces more output
for �i < 2. It drastically changes its decision policy just when �i becomes larger
than 2, actually, it jumps to an almost full-charge technology and decreases its
output close to zero. The technology level is getting better and output level is
gettling larger as �i approaches to �

b
i :

��ej
��

< 0 and
�qej
��

> 0 for �ai � �i < 2
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and
��ej
��

> 0 and
�qej
��

< 0 for 2 < �i � �bi :

Summary 4 When the value of �i increases from �
a
i to �

b
i , the ambient charge

tax rate increases for �i < 2 and decreases for �i > 2 along the upper half of
the '(�) = 0 closed curve. Firms�optimal choices of the abatement technolgy
and output production are drastically changed when the government changes its
tax policy from a tax increase to a tax decrease.

(A)Technologies (B) Outputs

Figure 9. Numerical results when � = 1:75

Taking �i given, we have two distinct solutions for � when the '(�) = 0 curve
is closed, and need a selection criterion to choose one solution. It is a decision
problem for the pro�t-maximizing �rms. Hence, the pro�t amount could be a
possible criterion. Figure 10, in which the graphical properties (i.e., meanings
of blue or magenta, solid or dotted) are the same, illustrates the pro�t changes
against the selected values of �i. The dotted curves are located above the solid
curves, implying that the pro�t obtained along the upper half is larger than the
pro�t along the lower half. Therefore, the �rms might prefer the choices along

27



the upper half of the closed curve.

Figure 10. The amounts of pro�t obtained
from two routes.

7 Concluding Remarks

This paper investigates the optimal environmental policy for non-point source
pollution under Cournot duopoly competition. The pro�t-maximizing �rms
determine their outputs and select the abatement technologies. The government
that is unable to monitor the individual emission amounts of the �rms constructs
a welfare function with uncertainty and determines the ambient tax rate by
maximizing the welfare expectation and minimizing the welfare variance. The
best replies of the �rms depend on the ambient tax rate that the government
imposes, and the best reply of the government depends on the levels of the
abatement technologies that the �rms select. Hence, the optimal ambient charge
tax rate and abatement technologies are determined as Nash solutions. We
numerically determine the Nash equilibrium since the government�s best reply
is too complicated to obtainn a general solution. We have shown that the
ambient tax rate is set lower than the Pigouvian tax in our imperfect competitive
market. We have also shown that the ambient charge e¤ectively controls the
total concentration of NPS pollution. We have further shown various individual
responses for a change in the ambient charge tax rate, which the government
might not observe.
The study reported in this paper can be extended in several directions. With

minor modi�cations, the two-stage game analyzed in this study can be recon-
structed as a standard three-stage game in which the output determinations
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are done at the third stage, the selections of the abatement technology at the
second stage, and then the ambient tax rate at the �rst stage. The linear price
and cost functions could be replaced with nonlinear functional forms. Intro-
ducing an isoelastic price function and corresponding dynamic extensions are
interesting research topics.
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Notice that all calculations in the following Appendices are done with Math-
ematica, version 12.1.

Appendix 1

In this Appendix, the derivatives of �ek of (20) are reproduced,

d�ek(�)

d�
= 4

�
4� 
2
A2 �B2

�2
(`�m�k + n��k) :

The derivation presents the following form of the denominator,

Den2 =
��
2(4� 
2)(2� 
)� (4 + 2
 � 
2)�2

� �
2(4� 
2)(2 + 
)� (4� 2
 � 
2)�2

��2
:

Expanding A2 �B2 gives rise to the form of

A2 �B2 = (4� 
2)Den

that is rewritten as

Den =
A2 �B2
4� 
2 :

The coe¢ cient of �k has the form

m = m0 �m2�
2 �m4�

4 +m6�
6

where

m0 = 16(4� 
2)3;
m2 = 4(4� 
2)(16� 24
2 + 3
4);

m4 = 4(16� 28
2 + 3
4);
m6 =

�
4 + 2
 � 
2

� �
4� 2
 � 
2

�
:

The coe¢ cient of ��k has the form,

n = n0 + n2�
2 � n4�4 + n6�6

where
n0 = 4(4� 
2)4;

n2 = 4(4� 
2)2(20� 3
2);
n4 = 4(4� 
2)(80� 30
2 + 3
4);
n6 =

�
4 + 2
 � 
2

� �
4� 2
 � 
2

�
:

The derivatives of qek in (22) is reproduced,

dqek(�)

d�
= 2

(4� 
2)4

(A2 �B2)2
�
��̀+ �m�k � �n��k

�
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and the coe¢ cient of �k has the form,

�m = 8�
�
�m0 � �m2�

2 + �m4�
4
�
:

The full forms of �m0, �m2 and �m4 are

�m0 = 4(4� 
2)2(4 + 
2);

�m2 = 6(4� 
2)(2� 
2);
�m4 = 16� 4
2 + 
4:

Appendix 2

In this Appendix, we provide the full forms of the coe¢ cients of equation
(27). The coe¢ cient of �2i + �

2
j is

A(
; �) = 2
�
4� 
2

� �
a0 + a2�

2 + a4�
4 + a6�

6 + a8�
8 + a10�

10
�

with
a0 = �16

�
4� 
2

�5 �
4 + 
2

�
;

a2 = �96
�
4� 
2

�3

2
�
12� 
2

�
;

a4 = 8
�
4� 
2

�2 �
192� 64
2 � 28
4 � 
6

�
;

a6 = �16
�
4� 
2

� �
2� 
2

� �
64� 16
2 � 
4

�
;

a8 = 3
�
16 + 4
2 � 
4

� �
16� 4
2 + 
4

�
;

a10 = 

2
�
4 + 2
 � 
2

� �
4� 2
 � 
2

�
:

Then the coe¢ cient of �i + �j is

B(
; �) =
�
4� 
2

� �
2(2� 
)2(2 + 
)�

�
4 + 2
 � 
2

��3 �
b1� + b3�

3
�

with
b1 = 2(2� 
)(2 + 
)2

�
12� 2
 � 
2

�
;

b3 =
�
4� 2
 � 
2

� �
4 + 2
 + 
2

�
:

Next, the coe¢ cient of �i�j is

C(
; �) = 2

�
c0 + c2�

2 + c4�
4 + c6�

6 + c8�
8 + c10�

10
�

with
c0 = 128

�
4� 
2

�6
;

c2 = 48
�
4� 
2

�4 �
12� 
2

� �
4� 
2

�
;
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c4 = �64
�
4� 
2

�3 �
32� 
2

� �
2� 
2

�
;

c6 = 8
�
4� 
2

�2 �
64 + 16
2 � 12
4 � 
6

�
;

c8 = 24
�
4� 
2

�2 �
16 + 4
2 � 
4

�
;

c10 =
�
4� 2
 � 
2

� �
4 + 2
 � 
2

� �
16 + 4
2 � 
4

�
:

Lastly, the constant term is

D(
; �) = d0 + d2�
2 + d4�

4 + d6�
6 + d8�

8

with
d0 = �32

�
4� 
2

�8
(2� 
);

d2 = 96
�
4� 
2

�6
(2� 
) 


�
8� 
2

�
;

d4 = 96
�
4� 
2

�5 �
4 + 2
 � 
2

� �
4� 8
 + 
3

�
;

d6 = �8
�
4� 
2

�3
(2 + 
)(4 + 2
 � 
2)2

�
32� 40
 + 5
3

�
;

and
d8 = 6

�
4� 
2

�2
(2 + 
)(4 + 2
 � 
2)3

�
4� 2
 � 
2

�
:

It can be con�rmed that D(
; �) = 0 if � = ��(
) and D(
; �) < 0 if � < ��(
).

Appendix 3

The quadratic polynomial, gj(�j) in (31), is reproduced,

gj(�j) = Aj (
; �)�
2
j +Bj (
; �)�j + Cj (
; �) :

The coe¢ cient of �2j is

Aj(
; �) = aj0 + aj2�
2 + aj4�

4 + aj6�
6 + aj8�

8 + aj10�
10

where
aj0 = 128

�
4� 
2

�6
(2 + 
) ;

aj2 = 64
�
4� 
2

�4
(2 + 
)

�
40 + 8
 � 
3

�
;

aj4 = 64
�
4� 
2

�3 �
48 + 120
 + 8
2 � 8
3 + 2
4 + 
5

�
;

aj6 = 32
�
4� 
2

�2 ��288 + 144
 + 56
2 � 40
3 � 12
4 + 2
5 + 
6� ;
aj8 = 8

�
4� 
2

�

2
�
4� 2
 � 
2

� �
40� 8
2 + 
3

�
;

aj10 = �4
2
�
4 + 2
 � 
2

� �
4� 2
 � 
2

�
:
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The coe¢ cient of �j is

Bj(
; �) = �4(4� 
2)bj1bj2bj3

with
bj1 = 2(2 + 
)(4� 
2)� �

�
4� 2
 � 
2

�
�3;

bj2 = 2(2 + 
)(4� 
2)(12� 2
 � 
2) +
�
4 + 2
 � 
2

� �
4� 2
 � 
2

�
�2;

bj3 = 4(2� 
)(4� 
2)2 + 24
�
4� 
2

�
�2 �

�
4 + 2
 � 
2

�

�4:

The constant term is

Cj(
; �) = �
�
4� 
2

�2 h
cj0 � 8

�
4� 
2

�3
cj2�

2 � 4
�
4� 
2

�2
cj4�

4 � 2
�
4� 
2

�
cj6�

6 � cj8�8
i

with
cj0 = �128

�
4� 
2

�5 �
4 + 
2

�
;

cj2 = 128 + 832
 + 192

2 + 16
4 + 8
5 � 2
6 + 
7;

cj4 = 2304 + 1408
 � 1216
2 � 632
3 � 352
4 + 16
5 + 52
6 + 6
7 � 3
8;

cj6 = 6656� 728
� 4096
2+728
3+992
4� 304
5� 48
6+64
7+6
8� 3
9;

cj8 = �
�
4 + 2
 � 
2

� �
256 + 512
 � 384
2 � 256
3 + 176
4 + 64
5 � 8
6 + 
8

�
:

Appendix 4

We present more precise explanations for each step of the step-by-step ap-
proach discussed in Section 4.

First step:

G
�
�i; �j ; 
; �

�
is arranged to be gi(�i) with the coe¢ cients,

Ai (
; �) = A(
; �),
Bi (
; �) = B (
; �) + C (
; �)�j ,

Ci (
; �) = A(
; �)�
2
j +B (
; �)�j +D (
; �) .

We can con�rm A(
; �) < 0. Since 0 < � < (4� 
2)=2 and 0 < 
 < 1,

A(
; 2) = 32
2(4� 
2)4(8� 
2)4 > 0;

and

A

�

;
4� 
2
2

�
= �


4(4� 
2)6(8� 
2)3(320� 8
2 + 14
4 � 
6)
256

< 0:

Then the locus of A(
; �) = 0 is located between the two loci of � = 2 and
� = (4 � 
2)=2. Under Assumption 3, the feasible � must satisfy � < ~�(
) <
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(4 � 
2)=2; implying A(
; �) < 0. Ci (
; �) is quadratic in �j and is equal to
D (
; �) < 0 for �j = 0: Its discriminant is

B (
; �)
2 � 4A(
; �)D (
; �)

and is numerically shown to be negative for 0 < 
 < 1 and 0 < � < 2: Hence
Ci (
; �) < 0 for any �j .

Second step:

The discriminant of gi(�i) is Bi (
; �)
2 � 4Ai (
; �)Ci (
; �) that can be fac-

tored as
Di (
; �) = K (
; �) gj(�j)

where K (
; �) has the form,�
2 (2� 
) (2 + 
) 2�

�
4� 2
 � 
2

�
�2
�2 h

2 (2� 
)2 (2 + 
)�
�
4 + 2
 � 
2

�
�2
i3

and it is positive due to Assumption 3, implying K (
; �) > 0. As is seen in (31),
gj(�j) is quadratic in �j and the full forms of Aj (
; �) ; Bj (
; �) and Cj (
; �)
are presented in the Appendix 3.

Third step:

The discriminant of gj(�j) is

Dj (
; �) = 64
�
4� 
2

�3
dj1dj2dj3A(
; �)

where
dj1 = 2(2� 
)(2 + 
)2 �

�
4� 2
 � 
2

�
�2

dj2 = 8(2� 
) (2 + 
)2 �
�
16� 8
 + 4
3 + 
4

�
�2

dj3 = 4(2� 
)3 (2 + 
)2 + �2
�
24
�
4� 
2

�
�
�
4 + 2
 � 
2

�

�2
�
:

Due to the following inequalities for 0 < 
 < 1;

� < ~�(
) <

s
8(2 + 
) (2 + 
)

2

16� 8
 + 4
3 + 
4 <

s
24 (4� 
2)

(4 + 2
 � 
2) 
 ;

we have
dj1 > 0; dj2 > 0 and dj3 > 0.

The sign of Dj (
; �) is the same as the sign of A(
; �). It is already shown

that A(
; �) < 0 for 0 < 
 < 1 and � < ~�(
): Hence Dj (
; �) < 0, implying
gj(�j) < 0 that, in turn, implies Di (
; �) < 0. Since the function gi(�i)
with A(
; �) < 0 is concave and negative for all �i > 0: The form of gi(�i) is
essentially the same as that of of G

�
�i; �j ; 
; �

�
: Therefore, we have

G
�
�i; �j ; 
; �

�
< 0.
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Appendix 5

Here we present the coe¢ cient of '(�) given in equation (42),

A7 = 156250
�
1085097

�
�2i + �

2
j

�
+ 1314364�i�j

�
;

A6 = �625
�
3553326777

�
�i + �j

�
+ 302730000

�
�2i + �

2
j

�
+ 3553326777�i�j

�
;

A5 = �18200
�
�484968484� 166541375

�
�i + �j

�
+ 78916875

�
�2i + �

2
j

�
+ 32211875�i�j

�
;

A4 = 4550
�
�3152295146 + 2661854195

�
�i + �j

�
+ 247350000

�
�2i + �

2
j

�
+ 98200000�i�j

�
;

A3 = 331240
�
�112224112� 38538500

�
�i + �j

�
+ 14079375

�
�2i + �

2
j

�
� 6047500�i�j

�
;

A2 = �165620
�
�364728364 + 129600835

�
�i + �j

�
+ 14850000

�
�2i + �

2
j

�
� 12550000�i�j

�
;

A1 = �24114272
�
�1623076� 557375

�
�i + �j

�
+ 185625

�
�2i + �

2
j

�
� 156875�i�j

�
;

A0 = 2
3 � 77 � 135

�
�26 + 5

�
�i + �j

��
:
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