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Abstract

In the case of non-point source (NPS) pollutions the individual sources
cannot be monitored, the regulator can observe only the total emission
level. Therefore the standard emission controlling instruments cannot be
applied. The regulator de�nes an emission standard and if the pollution
concentration is above this standard, then the �rms are uniformly taxed
and if it is below the standard then the �rms receive uniform subsidies.
In the case of a duopoly this is a three person game between the �rms
and the regulator. The �rms are pro�t maximizers, the regulator wants
to maximize social welfare. A leader-follower model is de�ned where the
regulator is the leader with de�ning the environmental standard, and the
�rms are the followers in �nding their optimal output levels and abatement
technologies. The �rms use a two-stage process, �rst �nding their optimal
output levels and then determining the best abatement technologies with
optimal output levels. The three stages are described and optimal choices
are determined. It is also shown that the total emission level can be
e¤ectively controlled by the ambient taxes.
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1 Introduction

In the literature of oligopoly theory a large variation of model variants has been
developed and examined including models with and without product di¤erenti-
ation, multi-product and employee owned oligopolies among others. Important
extensions include environmental regulations. The analysis of the e¤ects of
emission control has a long history and various kinds of regulations have been
suggested (Downing and White, 1986; Jung et al., 1996, etc.). Montero (2002)
examined the e¤ects of R&D investments for di¤erent environmental policies
in a duopoly market. Okuguchi and Szidarovszky (2002) considered oligopolies
with pollution treatment cost sharing, while Okuguchi and Szidarovszky (2007)
proved the existence of Cournot-Nash equilibrium, when the payo¤ of the �rms
included pollution control above an emission standard and pollution abatement
R&D. They also examined their e¤ects on the �rms�pro�ts. Chen et al. (2019)
examined supply chains where penalizing each �rm for the emission sometimes
can lead to higher overall emission. Most of earlier studies assumed point source
(PS) pollution, when the regulator was able to monitor the emission volume of
each �rm and regulations could be placed to each of them.
However considering environmental pollution today becomes much more

complicated. Their source can be human or nature related. The negative health
e¤ects of air and water pollutions are well known and clearly demonstrated.
More recently plastic pollution received high priority, since it can be found in
almost everywhere, in national parks, rivers, lakes and oceans. It is also demon-
strated that it has a huge e¤ect on the health of animals and humans. In most
cases it is impossible or unrealistic to �nd the individual pollutants, in which
cases we talk about non-point source (NPS) pollutions. Wu and Chen (2013)
compared the in�uence of PS and NPS pollutions on the water quality and de-
termined that NPS pollution was the dominant contribution to nutrient loads.
Segerson (1988) has proposed the monitoring of ambient concentrations of pol-
lutants. To control pollutions the regulator de�nes an environmental standard
level of pollution, and imposes uniform tax on the pollutants if the concentration
is above the standard and gives uniform subsidies if it is below the standard.
The main question arising in applying these ambient charges is to �nd condi-
tions when pollution can be controlled. Ganguli and Raju (2012) considered and
examined a Bertrand duopoly where an increased ambient charge could result in
larger pollution. Raju and Ganguli (2013) investigated Cournot duopolies and
numerically showed the e¤ectiveness of ambient charges in a two-stage model.
Sato (2017) explored this result in duopolies without product di¤erentiation. In
generalizing the earlier studies to n-�rm oligopolies, Matsumoto et al. (2018)
reexamined the static results and in a dynamic framework found stability and
instability conditions. Ishikawa et al. (2019) demonstrated that in an n-�rm
Bertrand oligopoly the sign of the ambient charge e¤ect depends on the number
of �rms, the degree of substitutability and the abatement technologies of the
�rms.
This paper introduces a three-stage Cournot duopoly with product di¤erenti-

ation, where the three decision variables are the production levels, the abatement
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technologies of the �rms, and the ambient charge rate de�ned by the regulator.
As usual, solving this three-stage game backwardly, we derive the sub-game
perfect equilibrium of the game, that is, in the third stage the optimal output
levels of the �rms are determined with all other parameter being �xed and it is
shown that higher ambient charges are e¤ective in controlling the total emission
of NPS pollutions. In the second stage the best ambient charge technologies
of the �rms are determined with optimal output levels. In the �rst stage the
regulator determines the optimal rate of the ambient charge to maximize social
welfare.
The paper is organized as follows. In Section 2 the optimal output levels of

the �rms are determined, in Section 3 the optimal abatement technologies are
derived. In Section 4 the social welfare optimizing problem is solved. Conclu-
sions and further research directions are given in Section 5.

2 Determinations in the Third-stage

Let us consider a Cournot duopoly market in which �rm i produces a di¤eren-
tiated output qi with a linear price function,

pi = �i � qi � 
qj (1)

where �i > 0 is the maximum price and 0 � 
 � 1 denotes the degree of product
di¤erentiation; two goods are substitutes if 0 < 
 < 1, homogeneous if 
 = 1
and independent if 
 = 0. Let �i denote the pollution abatement technology
of �rm i (0 � �i � 1) with a pollution-free technology if �i = 0 and a fully-
discharge technology if �i = 1. We make the following constraints on 
 and �i
to get rid of the extreme cases.

Assumption 1. (1) 0 < 
 < 1 and (2) 0 < �i < 1.

If �rm i has the marginal cost ci and the belief that the competitor�s output
will remain unchanged, then its pro�t at the third stage is

�i(qi; �i) = (�i � qi � 
qj) qi � ciqi � �(�iqi + �jqj � �E) (2)

where �E is the ambient standard and � is the ambient tax rate.1 To have
positive pro�t in case of no pollutions, �i > ci is assumed. Di¤erentiating the
pro�t function of �rm i with respect to qi presents the �rst-order condition for
an interior solution maximizing the pro�t of �rm i,

@�i
@qi

= �i � 2qi � 
qj � ci � ��i = 0: (3)

1This rate is measured in some monetary unit per emission, it is positive and can be larger
than unity (e.g., dollar/ton, yen/kg, etc.)
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The �rst-order condition for �rm j is similarly obtained. The optimal levels of
outputs can be obtained by solving simultaneously the �rst-order conditions,
which can be rewritten as

2qi + 
qj = �i � ci � ��i;


qi + 2qj = �j � cj � ��j :
(4)

Let �k = �k � ck > 0 for k = i; j and assume the following for the sake of
analytical simplicity2 .

Assumption 2. �i = �j = �:

Equations (4) can be compactly rewritten as�
2 


 2

��
qi
qj

�
=

�
� � ��i
� � ��j

�
: (5)

Solving (5) gives the optimal levels of outputs,

q�i (�; �i; �j) =
(2� 
)� + �

�

�j � 2�i

�
4� 
2 ;

q�j (�; �i; �j) =
(2� 
)� + �

�

�i � 2�j

�
4� 
2 :

(6)

To have non-negative output, we have the following inequality conditions, �rst
for q�i � 0;

�j �
2



�i �

(2� 
)�

�

(7)

and then for q�j � 0;

�j �



2
�i +

(2� 
)�
2�

: (8)

Since the ambient technologies and the ambient tax rate are given, we call the
third-stage the short-run. Hence the non-negativity of output is summarized as
follow:

Lemma 1 In the short-run, the optimal Cournot outputs are non-negative if
the following inequalities hold,

2



�i �

(2� 
)�

�

� �j �



2
�i +

(2� 
)�
2�

: (9)

2This is a rather strong assumption however slightly weaker than assuming �i = �j = �;
ci = cj = c and �� c > 0.

4



The total amount of NPS pollution at the Cournot equilibrium point3 is

E�(�) = �iq
�
i (�) + �jq

�
j (�) (10)

for which we have the following:

Theorem 1 In short-run, the ambient charge is e¤ective in controlling the total
emission of NPS pollutions,

@E�(�)

@�
< 0:

Proof. Substituting the optimal outputs q�i and q
�
j into (10) and then di¤eren-

tiating it with respect to � presents

@E�(�)

@�
=

�2
4� 
2

�
�2i + �

2
j � 
�i�j

�
= � 2

4� 
2
h�
�i � �j

�2
+ (2� 
)�i�j

i
< 0

where the inequality is due to Assumption 1.

3 Determinations in the Second-stage

In this section, we determine the optimal abatement technology for each �rm.
Substituting the optimal level of output in (6) into the pro�t function (2) and
adding an installation cost of technology, (1 � �i)

2; yield the reduced form of
the pro�t function of �rm i,

��i (�i; �j) =
�
�i � q�i � 
q�j

�
q�i � ciq�i � (1� �i)2 � �

"
jX
k=i

�kq
�
k � �E

#
(11)

Di¤erentiating the resultant expression with respect to �i yields the �rst-order
condition for the pro�t maximization of �rm i,

@��i
@�i

=
@��i
@qi

@q�i
@�i

+
@��i
@qj

@q�j
@�i

+
@��i
@�i

����
q�i ;q

�
j :const

= 0 (12)

3The arguments of �i and �j in the optimal outputs de�ned in (6) is omitted only for the
sake of notational simplicity.
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where
@��i
@qi

= �i � 2q�i � 
q�j � ci � ��i = 0;

@��i
@qj

= �
q�i � ��j ;

@q�i
@�i

= � 2�

4� 
2

@q�j
@�i

=

�

4� 
2 ;

@��i
@�i

����
q�i ;q

�
j :const

= 2(1� �k)� �q�i :

The second-order conditions (SOC henceforth) for �rms i and j are the same,

@2��i
@�2i

=
@2��j

@�2j
=

8�2

(4� 
2)2
� 2 < 0

where the inequality holds if

� <
4� 
2
2

: (13)

Rearranging the terms in (12) simpli�es the form of the �rst-order condition
for �rm i as

2
h�
4� 
2

�2 � (2�)2i�i + �8� 
2� 
�2�j = 4 (
 � 2)�� + 2 �4� 
2�2 :
In the same way, the �rst-order condition for �rm j is obtained as�

8� 
2
�

�2�i + 2

h�
4� 
2

�2 � (2�)2i�j = 4 (
 � 2)�� + 2 �4� 
2�2 :
These two equations are put into a matrix form0BB@

2
h
(4� 
2)2 � (2�)2

i �
8� 
2

�

�2

�
8� 
2

�

�2 2

h
(4� 
2)2 � (2�)2

i
1CCA
 

�i

�j

!
=

 
K

K

!
(14)

with
K = 4 (
 � 2)�� + 2

�
4� 
2

�2
:

Then (14 ) is solved for optimal abatement technologies of �rms i and j,

��i = ��j = �e(�) =
2(2� 
) (2 + 
)2 � 4��

2(2� 
) (2 + 
)2 � (4� 2
 � 
2)�2
: (15)
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Notice that each �rm selects the same technology due to Assumption 2.
We now verify circumstances under which 0 < �e < 1 holds. The condition

for �e > 0 is that both of the denominator and the numerator of (15) are either
positive or negative. The denominator is positive if

� < f1(
) =

s
2(2� 
) (2 + 
)2

(4� 2
 � 
2) (16)

with
f1(0) = 2 and f1(1) = 3

p
2 (' 4:243)

and negative if the inequality of (16) is reversed. The numerator is positive if

� < f2(
; �) =
(2� 
) (2 + 
)2

2�
(17)

with

f2(0; �) =
4

�
; f2(1; �) =

9=2

�
and

@f2
@�

< 0

and negative if the inequality of (17) is reversed.
For �e < 1; we have two conditions as well. One of them is that in addition

to the positivity of the denominator and the numerator (15), the denominator
is larger than the numerator,

� < f3(
; �) =
4�

4� 2
 � 
2 (18)

where

f3(0; �) = �; f3(1; �) = 4� and
@f3
@�

> 0:

The other condition is that both of the denominator and the numerator are
negative and the absolute value of the denominator is larger than the absolute
value of the numerator under which the inequality of (18) is reversed. Finally,
to check the SOC, we denote the right hand side of (13) as

f4(
) =
4� 
2
2

(19)

with
f4(0) = 2 and f4(1) =

3

2
:

In the special case of � = 2; we have the following relative size among fk
for k = 1; 2; 3; 4;

f4(
) < f3(
; �) < f1(
) < f2(
; �) for 
 2 (0; 1)

with
f1(0) = f2(0; �) = f3(0; �) = f4(0) = 2:

7



These results are represented in Figure 1 in which the blue and green curves
describe the loci of � = f2(
; �) and � = f3(
; �) whereas the upward-sloping
and downward-sloping black curves illustrate the loci of � = f1(
) and � = f4(
);
respectively. The region below the � = f4(
) curve is colored in yellow in which
the SOC is ful�lled. Hence, for (
; �) in the yellow region,

� < f2(
; �) < f1(
) hold, implying �
e > 0 due to (16) and (17)

and
� < f3(
; �) holds, implying �

e < 1 due to (18).

We have, therefore, the benchmark result in which we call the second stage the
medium-run in which � is �xed.

Lemma 2 In the medium-run with � = 2, the optimal level of the abatement
technology is positive and less than unity ( i.e., 0 < �e < 1) if the SOC is
satis�ed.

Figure 1. Relative location of fk for
k = 1; 2; 3; 4 and � = 2

We next validate the conditions for which 0 < �e < 1 holds when � 6= 2.
The locations of the two black curves are independent from � whereas those
of the green and blue curves depend on it (i.e., @f2=@� < 0 and @f3=@� >
0). Considering the directions of these derivatives, we turn attention to two
cases, one with � < 2 and the other with � > 2:

Case I: 0 < � < 2
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Decreasing the value of � from 2 shifts the blue curve upward and the green
curve downward. We can eliminate the blue curve out of considerations (i.e.,
positivity of �e is guaranteed). Since the green curve describes � = f3(
; �) with
which the optimal level of the abatement technology is unity, the yellow region
of Figure 1 is divided into two subregions, one in which �e � 1 and the other in
which �e < 1. The former violates Assumption 1(2) and should be discarded.
To see this division more clearly, we �rst solve f3(1; �) = f4(1) for � to have
the critical value �a = 3=8(= 0:375): Then we can con�rm the followings:

(i) if �a < � < 2, then the green curve crosses the lower black curve locus for
some value 0 < ~
(�) < 1 at which f3(~
(�); �) = f4(~
(�)) holds;4

(ii) if 0 < � � �a; then the green curve does not cross the lower black curve
for 0 < 
 < 1 and hence ~
(�) � 1:

To sum up, we have the following in case of � < 2:

Lemma 3 Given 
 2 (0; 1), the optimal level of the abatement technology sat-
is�es the condition, 0 < �e < 1; if �a < � < 2 and � < min [f3(
; �); f4(
)] or
if 0 < � � �a and � < f3(
; �).

As an example, we take � = 3
p
2=4 (' 1:061) > �a in Figure 2(A) in which

the solid green curve crosses the downward sloping black curve at ~
 ' 0:627.
The feasible region of (
; �) is constructed by

� < f3(
; �) and 0 < 
 < ~
 and � < f4(
) and ~
 < 
 < 1

where the less-than-unity condition is violated in the yellow region with slants
between � = f3(
; �) and � = f4(
): Notice that the dotted green curve illus-
trates the � = f3(
; �) locus with � = �a: For � < �a; the feasible region of
(
; �) is below the � = f3(
; �) locus that is located below the dotted green
curve.

Case II: � > 2

Increasing the value of � from 2 shifts the green curve upward and the blue
curve downward. The roles of the blue and green curves in Case I is interchanged
in Case II. Since the blue curve describes � = f2(
; �) for which the optimal
level of abatement technology is zero, the yellow region of Figure 1 is divided
into two subregions as well, one in which �e � 0 and the other in which �e > 0.
The former violates Assumption 1(2) and should be discarded. To see this
division more clearly, we �rst solve f2(1; �) = f4(1) for � to have the critical
value �b = 3: The dotted blue curve is the locus of � = f2(
; �b). Hence we can
con�rm the followings:

4Based on the de�nitions of f3(
; �) and f4(
); it is seen that ~
(�) is a solution of a quartic
equation. It is possible to have its explicit form. Neverthless, it is not presented here as it is
long and clumsy.
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(iii) if 2 < � < �b, then the blue curve crosses the lower black curve locus for
some value 0 < �
(�) < 1 at which f2(�
(�); �) = f4(�
(�)) holds;5

(iv) if �b � �; then the blue curve does not cross the lower black curve for
0 < 
 < 1, implying that �
(�) � 1:

To sum up, we have the followings in Case 2.

Lemma 4 Given 
 < (0; 1), the optimal level of the abatement technology sat-
is�es 0 < �e < 1 if 2 < � < �b and � < min [f2(
; �); f4(
)] or if � > �b and
� < f2(
; �).

As an example, we take � = 5=2 < �b in Figure 2(B) in which the solid blue
curve crosses the downward sloping black curve at �
 ' 0:5. Notice that (
; �)
in the feasible region satis�es

� < f2(
; �) and 0 < 
 < �
 and � < f4(
) and �
 < 
 < 1

where the positivity condition is violated in the yellow region with slants between
� = f2(
; �) and � = f4(
): Notice that the dotted blue curve illustrates the
� = f2(
; �b) locus. For � > �b; the feasible region is below the � = f2(
; �)
locus that is also located below the dotted blue curve.

(A) � = 3
p
2=4 (B) � = 5=2

Figure 2. The feasible region of (
; �) for 0 < �e < 1

From these lemmas, we have the following:

5Based on the de�nitions of f3(
; �) and f4(
); it is seen that ~
(�) is a solution of a quartic
equation. It is possible to have its explicit form. Neverthless, it is not presented here as it is
clumsy.
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Theorem 2 In the medium-run in which � is given, the optimal abatement
technology �e(�) is positive and less than unity if one of the following four
conditions is satis�ed for 0 < 
 < 1,

(i) 0 < � � �a and � < f2(
);

(ii) �a < � < 2 and � < min [f3(
; �); f4(
)] ;

(iii) 2 < � < �b and � < min [f2(
; �); f4(
)] ;

(iv) �b � � and � < f2(
):

The optimal production given in (6) is reduced to

q�k(�; �
�
i (�); �

�
j (�)) = q�k(�; �

e(�); �e(�)) = qe(�) for k = i; j

where the reduced form of the optimal production is

qe(�) =
� � ��e(�)
2 + 


: (20)

and the corresponding prices are

pei (�) = �i � (1 + 
)qe(�). (21)

It can be shown that the price is positive when qe(�) > 0. Substituting (20)
into (21) and arranging the terms yield

pei (�) =
�i + (1 + 
) [ci + ��

e(�)]

2 + 

> 0.

The total amount of NPS pollution is

Ee(�) = 2�e(�)qe(�): (22)

Di¤erentiating (22) with respect to � and then arranging the terms yield6

@Ee

@�
= �

4
�
`(
; �)�2 �m(
; �)� + n(
; �)

��
2(2� 
)(2 + 
)2 � (4� 2
 � 
2)�2

�3 (23)

where the inequalities of the following forms are due to Assumption 1(1),

`(
; �) = 4(2� 
)2(2 + 
)3 + �2
�
24(4� 
2) + (4� 2
 � 
2)
�2

�
> 0

m(
; �) = (2�
)(2+
)�
�
2(2� 
)(2 + 
)2(12� 2
 � 
2) + (4� 2
 � 
2)(4 + 
2 + 2
)�2

�
> 0

and

n(
; �) = (2� 
)2(2 + 
)3
�
2(2� 
)(2 + 
)2 + 3(4� 2
 � 
2)�2

�
> 0:

6The calculations have been done with Mathematica, version 11.
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The denominator is positive if the SOC is ful�lled. The expression in the square
brackets of the numerator is a quadratic polynomial in � and its discriminant is

D = [m(
; �)]
2 � 4`(
; �)n(
; �)

= (4� 
2)2
�
�2
3 +

�
4� 
2

�
(4� �2) + 2
(4 + �2)

�2
 (
; �)

(24)

where
 (
; �) =

�
16� 8
 + 4
3 + 
4

�
�2 � 8(2� 
)(2 + 
)2:

In the last line of (24), its right hand side is described by the product of three
factors and the �rst two factors are clearly positive while the sign of the last
factor  (
; �) seems to be ambiguous, however, it can be shown to be negative.
To this end, we rewrite the form of  (
; �) as

�
16� 8
 + 4
3 + 
4

� 
� +

s
8(2� 
)(2 + 
)2
16� 8
 + 4
3 + 
4

! 
� �

s
8(2� 
)(2 + 
)2
16� 8
 + 4
3 + 
4

!

where the �rst two factors are positive and the last factor is shown to be negative
if the SOC is satis�ed. Hence, we have the following:

Lemma 5  (
; �) < 0 for the values of 
 and � satisfying the SOC of the
optimal production.

Proof. Using the square of f4(
), we have

8(2� 
)(2 + 
)2
16� 8
 + 4
3 + 
4�

�
4� 
2
2

�2
=
(2� 
)
(2 + 
)2

�
32� 8
 � 8
2 + 2
3 + 
4

�
4 (16� 8
 + 4
3 + 
4) > 0

that implies

f4(
) =
4� 
2
2

<

s
8(2� 
)(2 + 
)2
16� 8
 + 4
3 + 
4 :

Since � < f4(
) to satisfy the SOC, we have

� <

s
8(2� 
)(2 + 
)2
16� 8
 + 4
3 + 
4 :

This inequality leads to  (
; �) < 0:

Since  (
; �) < 0; the discriminant (24) is negative, implying that the nu-
merator of (22) is positive. Therefore we have the following:

Theorem 3 In the medium-run, the ambient charge is e¤ective in controlling
the total amount of NPS pollution,

dEe

d�
< 0:
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4 Determinations in the Third-stage

It is assumed that the regulator determines the optimal rate of the ambient
charges to maximize the social welfare

W = CS + PS + T �D (25)

where CS, PS, T and D stand for consumer surplus, producer surplus, tax
collected with pollution emission and the damage caused by NPS pollutions,
respectively.7

The representative consumer maximizes

U(qi; qj)�
jX
k=i

pkqk

where the utility function U is assumed to be quadratic and strictly concave,

U(qi; qj) = �iqi + �jqj �
1

2

�
q2i + 2
qiqj + q

2
j

�
+m

with m being the numeraire good. Maximizing this utility gives rise to the
inverse demand functions in (1). Hence the consumer surplus is

CS(�) = [U(qe(�); qe(�))� U(0; 0)]�
�
pei (�) + p

e
j(�)

�
qe(�)

where the �rst term indicates the total increase of utility caused by consum-
ing qe(�) of each good and the second term is the total expenditure by the
consumers. The producer surplus is the sum of the pro�ts gained by the �rms

PS(�) = �ei (�) + �
e
j(�)

=

jX
k=i

(pek(�)� ck) qe(�)� 2(1� �e(�))2 � 2�
�
Ee(�)� �E

�
:

The net tax revenue is
T (�) = 2�

�
Ee(�)� �E

�
:

The damage is a linear function of the total amount of NPS pollution where
� = 1 is assumed for analytical simplicity,8

D(�) = �Ee(�)

Hence the form of the welfare function is reduced to

W (�) = 2�qe(�)� (1 + 
) [qe(�)]2 � 2(1� �e(�))2 � 2�e(�)qe(�): (26)

7The emission standard �E is another direct regulation of the regulator. Its level should be
determined so as to maximize the net social gains that will be considered in a future study.

8Notice �rst that the qualitative aspects of the results to be obtained are not a¤ected by
� = 1: Notice second that Ee(�) could be negative, depending on a choice of the parameter
values, 
 and �: Hence, if the damage is assumed to be quadratic, which is often adoped in
the literature, the welfare function could involve the exaggerated damage.
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Di¤erentiating (26) with respect to � and arranging the terms yield the
following form,

dW (�)

d�
=

'(
; �; �)�
2(2� 
)(2 + 
)2 � (4� 2
 � 
2)�2

�3 (27)

where
'(
; �; �) = 4

�
�0(
; �)�

2 + �1(
; �)� + �2(
; �)
�

with

�0(
; �) = 8(2� 
)2(2 + 
)3 � 16(2� 
)
(2 + 
)2� + 48(2� 
)(2 + 
)�2 �
8(24� 8
 � 6
2 + 
3)�3 + 2
(4� 2
 � 
2)�4;

�1(
; �) = �2(2� 
)(2 + 
)2 � 4(2� 
)2(2 + 
)3(12� 2
 � 
2)�+
24(2� 
)(2 + 
)3(3� 
)�2 � 2(2� 
)(2 + 
)(4� 2
 � 
2)(4 + 2
 + 
2)�3+
(4� 2
 � 
2)(32� 12
 � 8
2 + 
3)�4

and

�2(
; �) = �2(2� 
)2(2 + 
)3 + 2(2� 
)2(2 + 
)2(1 + 
)� �
3(2� 
)(2 + 
)(4� 2
 � 
2)�2 + (4� 2
 � 
2)(10� 3
 � 3
2)�3:

It is already con�rmed that the denominator of (27) is positive as far as the SOC
is satis�ed. The numerator '(
; �; �) has a long and clumsy form and seems
analytically intractable. Hence in the following, we numerically consider the
determination of the optimal rate of the ambient charge. Notice that '(
; �; �) =
0 implies dW (�)=d� = 0. In the following, we divide the feasible interval of �
into three subintervals, 0 < � < 1; 1 � � < 2 and 2 � � and then determine
the optimal � in each of these intervals.

Interval I: 0 < � < 1

Figure 3 presents two examples for determining the optimal tax rate � under
0 < � < 1: The �rst example assumes � = 0:9 with which the gently sloping solid
red curve, the steeper positive-sloping dashed red curve and the �atter positive-
sloping dotted red curve illustrate, respectively, the loci of 0 = '(
; �; �) in (27),
� = f3(
; �) in (18) and 0 = qe(
; �; �) in (20).9 Rearranging the numerator of
(20), we can rewrite the zero-production curve as

�
�2 � 2(2� 
)(2 + 
)� + 2(2� 
)(2 + 
) = 0

that is solved for � to have a smaller root,

� = f5(
; �) =
4� 
2 �

q
(4� 
2)(4� 
2 � 2
�2)

�

: (28)

9To clearify the parameter dependency, qe(�) is replaced with qe(
; �; �) in this section.
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This is an alternative form of the dotted curve. Given �; the regulator
determines the optimal ambient tax rate by solving 0 = '(
; �; �) for 0 < 
 < 1.
However, it is not sure whether the �rms also can make the optimal choices
under the selected �. Since � < f2(
; �) < f1(
) hold for � = 0:9, the optimal
technology satisfying 0 < �e < 1 is obtained in the region under the dashed
curve in which � < f2(
; �): The optimal output is positive in the region under
the dotted curve that crosses the solid curve at point a = (
a; �a) with


a ' 0:745 and �a ' 0:997:

Hence if � is selected from the segment ab of the solid curve against 
 2 (
a; 1),
then �rm i can determine the optimal technology and produce positive output
qe(
; �; �) > 0 and sell it with positive price pei (
; �; �) > 0:
The length of the feasible segment of the solid curve depends on the values of

the parameters. The second example decreases the value of � to �L ' 0:796 for
which such a feasible segment shrinks. In Figure 3, the gently sloping solid blue
curve, the steeper positive-sloping dashed blue curve and the �atter positive
sloping dotted blue curve present, respectively, the loci of 0 = '(
; �; �), � =
f3(
; �) and 0 = qe(
; �; �) with this new value of �: As can be seen, the solid
curve crosses the dotted curve at point c = (1; �c) with �c ' 0:905 on the vertical
line at 
 = 1. Alternatively put, �L together with �c solves 0 = '(1; �; �)
and 0 = '(1; �; �) simultaneously. It can be observed that decreasing � from
�L shifts the solid curve upward and the dotted curve downward. As a natural
consequence, the crossing of these two curves does not occur for 
 2 (0; 1)
if � < �L, implying q

e(
; �; �) < 0 along the 0 = '(
; �; �) curve. Roughly
speaking, when 0 < � < �L; the optimal tax rate is too strict for the �rms to
produce positive outputs. We summarize these results as follows:

Lemma 6 For �L < � < 1; the �rms produce positive production qe(
; �; �) > 0
if 0 = '(
; �; �) and � < f5(
; �).

Lemma 7 For 0 < � � �L; the optimal production is non-positive for 
 and �
satisfying 0 = '(
; �; �):
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Figure 3. Optimal � under 0 < � < 1

Interval II: 1 � � < 2

Figure 4 provides three examples. As in Figure 3, the solid curve, the dashed
curve and the dotted curve correspond to the loci of 0 = '(
; �; �), � = f3(
; �)
and 0 = qe(
; �; �): The red, blue and green curves are illustrated with � =
1; � = 1:3 and � = 1:6. It is seen that the dashed and dotted curves are
located above the corresponding solid curves in the same color. This implies
that 0 < �e(
; �; �) < 1 and qe(
; �; �) > 0 are guaranteed if the optimal � is
selected from the solid curve against 
 2 (0; 1). To put it in another way, the
solid curve that determines the optimal � is located below the � = 1 line and
� > 1: In consequence, �=� > 1 and thus qe(
; �; �) > 0 from (20).

Lemma 8 For 1 � � < 2; the �rms can select the optimal abatement technology
and produce positive productions under the optimal ambient tax rate.
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Figure 4. Optimal � under 1 � � < 2

Interval III: � � 2
For � � 2; � < f3(
; �) always in the yellow region. Hence it is replaced

with � < f2(
; �) and the locus of � = f2(
; �) is described by the dashed
curve, instead. In Figure 5, the red, blue and green curves take, respectively,
� = 2; � = 3 and � = 4:5. The dotted curve that guarantees the positivity of
the optimal output are located far above Figure 5 and thus are not depicted.
Since the solid red curve of 0 = '(
; �; �) with � = 2 does not cross the dashed
red line, the optimal ambient tax rate can be determined for each value of

 2 (0; 1). On the other hand, for � = 3; the solid blue curve meets the dashed
blue curve at point a = (
a; �a) where


a ' 0:449 and �a ' 1:551:

The optimal � that is feasible to the �rms is determined against 
 2 (
a; 1)
along the segment ab of the solid blue curve. In the third example, �U = 4:5 is
selected to make the green solid and dashed curves meet at point c = (1; �c) with
�c = 1: Here the �rms take the zero level of the abatement technology under
�c at point c. Further, increasing � from �U shifts the solid curve upward and
the dashed curve downward. No intersection of these curves occur for � > �U .
In consequence, the �rms select the negative abatement technology with the
optimal � satisfying 0 = '(
; �; �); however such a selection is assumed away in
this paper.

Lemma 9 For � > �U ; the �rms are unable to select the optimal abatement
technology under the optimal ambient tax rate.

Lemma 10 For 2 � � < �U ; the �rms can select the optimal technology and
positive production if 0 = '(
; �; �) and � > f3(
; �).
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Figure 5. Optimal � under � � 2

Here �L and �U are the lower and upper bounds in the sense that no positive
production takes place for � � �L and no positive level of the abatement tech-
nology is adopted for � � �U . From Lemmas 6-10, we arrive at the conclusion
at the �rst stage that we call the long-run because the tax rate is a selection
variable:

Theorem 4 In the long run, the �rms can select the optimal abatement tech-
nology 0 < �e(
; �; �) < 1 and produce positive production qe(
; �; �) > 0 under
the optimal ambient charge if one of the following three conditions is ful�lled,

(i) 1 � � < 2 and 0 = '(
; �; �),

(ii) �L < � < 1; 0 = '(
; �; �) and � < f5(
; �);

(iii) 2 < � < �U ; 0 = '(
; �; �) and � < f2(
; �):

5 Concluding Remarks

This paper considers NPS pollutions in Cournot duopolies. The �rms�objec-
tive is to maximize pro�ts, and the regulator wants to maximize social welfare.
A three-stage model is developed where in the third stage the optimal output
levels of the �rms are determined. In the second stage the optimal abatement
technologies of the �rms are derived. In both stages the �rms maximize their
pro�ts and the e¤ectiveness of the ambient charge on the total emission level
of NPS pollutions is proved. In the third stage the optimal ambient tax rate
is found which maximizes social welfare. Linear price and cost functions were
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assumed. Further research will consider other function forms, including hyper-
bolic prices, and nonlinear costs. It is also a challenging task to generalize the
�ndings of this paper to n-�rm Cournot and Bertrand oligopolies. These topics
will be the subjects of our next projects.
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