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Abstract 

The almost ideal demand (AID) system model by Deaton and Muellbauer (1980) has desirable 

properties for consumer demand function. However, since it is difficult to estimate the “true” AID 

system , linearized almost ideal demand (LAID) system model is estimated. In this paper, we 

employ the estimation method for the “true” AID system model by Bayesian method. An advantage 

of our estimation method is to calculate not-linearized demand parameters. 
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1 Introduction 

When we estimate the demand system, we generally use the piglog-type utility function. The 

reason why we generally use piglog-type function is to solve an aggregation problem. The 

aggregation problem is that functional-form of aggregated model demand system at demand 

function is not equal to the one of not aggregated model. If the piglog-type utility function is used, 

aggregated demand function is equal to not aggregated demand function. Namely, when we 

estimate the demand system using macro date, we generally estimate the demand function based on 

the piglog-type utility function.  

The almost ideal demand (AID) system model suggested by Deaton and Muellbauer (1980) is 

piglog model. Furthermore, this model has desirable properties for consumer demand function. At 

the first desirable property, the AID system model tests whether the demand function satisfies 

first-order condition of utility function. Generally, the other models satisfy first-order condition 

of utility function, and can not to test one. In the second property, the AID system model is linear 

model for prices and Income. However, at a price index, the AID system model is nonlinear. If the 

linearly approximated model replaced the nonlinear price index with the linear one was employed, 

it is simple to estimate the AID system model. It is often called as the linearized almost ideal 

demand (LAID) system model. However, we found that the use of the linear price index brings the 

serious problems in econometrics such as the bias in estimates, the errors in variables, and the 

simultaneity in budget shares (Alston et al., 1994; Buse, 1994; Parshardes, 1993). Above all, the 

estimation in demand system largely depends on the price index, and then if there is a biased 

problem in price index itself, their estimates derived from using it must also involve biases. In order 

to resolve these problems fundamentally, we suggest a estimation method for the "true" AID system 

model in this paper. 

The "true" AID system model is nonlinear for price index parameter. Thus, the "true" AID system 

model is able to be estimated for maximum likelihood method. However, because the "true" AID 

system model has complex parameter, it is difficult to estimate one. Therefore we suggest a 

Bayesian estimation method for the "true" AID system model. The Bayesian method has already 

applied to the estimation of AID system model, for example, Chalfant et al. (1983), Tiffin and 

Aguiar (1995), and Lariviere et al. (2000). In these previous studies, LAID system models are 



estimated. An advantage of our estimation method is to estimate parameters of the AID system 

model not depending on their price index; therefore we can avoid their imperative problem to biases. 

In addition, it is also possible to calculate the true value of the AI price index by followed to our 

posterior estimates. Moreover, our complicated estimation can easily calculate by using the Markov 

Chain Monte Carlo (MCMC) method, but if not converge in the classical estimation. 

This paper is organized as follows. We transform the AID system model by Deaton and 

Muellbauer (1980) not to depend on their price index in section 2, and express it as the Bayesian 

framework in section 3. Further we apply to real data in section 4, and compare posterior estimates 

in the AID system model with the LAID system model. Finally, we describe the summary in this 

paper. 

 

2 Model 

 

The AID system model by Deaton and Muellbauer (1980) is expressed as 
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With the nonlinear price index  
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where wit is the i th expenditure share in the period t, pjt is the j th price in the period t, and xt 

denotes the total expenditure on all commodities in a system. The AID system model needs to 

satisfy with linear restrictions as adding-up, homogeneity and symmetry respectively, and the 

imposition of these properties can test in their parameters. The adding-up condition is given by Σi ai 

= 1, Σi bij = 0 and Σi ci = 0, the homogeneity condition is Σj bij = 0, and the symmetry condition is bij 

= bji. 

Substituting (2) for (1), we can obtain the following as: 
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Letting the constant parameters a = (a1, a2,…, an)’ in a n × 1 vector, the price parameters b = (b1’, 



b2’,…, bn’)’ in a n
2
 × 1 vector where bi = (b1i, b2i,…, bni)’, and the total expenditure parameters c = 

(c1, c2,…,cn )’ in a n × 1 vector. Then, we define their parameter vectors as θ = (θ1’, θ2’)’, where θ1 = 

(a’, b’)’ and θ2 = c’. The vector of explanatory variables in (3) is Zt = (1, pt, ln xt, pt
**

) in a 1 × (2 + n 

+ n
2
) vector, where the price terms vector is pt = ( ln p1t, ln p2t,…, ln pnt ) in a 1 × n vector. We 

denote the quadratic price terms as a row vector, pt
**

 = (p1t
*
, p2t

*
,…, pnt

*
) in a 1 × n vector. Therefore, 

(3) can be simply rewritten by  
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where βi is a parameter vector, and can be defined as 
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and let 
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where Ji is an operation vector which winkles out the i th scalar from a 1 × n vector, namely ai = Ji 

ai and ci = Ji ci. And Ji
*
 is n ×n

n
 matrix parameter vector which winkles out bi from b, namely bi = 

Ji
*
b. 

Further, stacking (4) for n commodities, 
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where Yt = (w1t,…,wnt)’, Zt
*
 = Zt In, β = (β1,…, βn)’ and ut = (u1t,…,unt)’ is normally distributed as 

ut ~ N(0, Σ). When we estimate the AID system model, the n - 1 equations are used because the 

adding-up condition is automatically satisfied. The homogeneity and symmetry conditions need to 

impose further restrictions on parameters. When we consider the demand restrictions in parameters, 

we denote the restricted parameters as a
*
, bi

*
, c

*
, θ1

*
 and θ2

*
. These can be rewritten as a = Ea

*
 + ι, 

bi = Ebi
*
, c = Ec

*
, 
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and θ2 = E0θ2
*
, where ι = (0,…,0,1)’ and ι

*
 = (ι’,0’,…,0’)’. And we express as 
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where Ei (i = 1,2,3) is differently set each restriction.  

In the case of adding-up, we set Ei = E1 as  

.
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In the homogeneity-constrained model, we set E2 as 
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In the symmetry-constrained model, we set E3 as 
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and Ku(v) and H u(v) are the indicator functions such as 
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Then, rewriting the constrained vector βi
*
 along above definitions, 
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Moreover, we stack the parameter vector (12) as the following representation: 
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Therefore the parameter vector β
*
 can be obtained by simulating θ1

*
 and θ2

*
. 

 

3    Bayesian framework 

 

We can easily simulate parameters θ
*
 of the AID system model by sampling them dividing 

into two blocks (θ1
*
, θ2

*
). The prior distributions of constrained parameters θ

*
 and the variance - 

covariance matrix Σ are given by 

θ
*
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(・) denotes an inverse Wishart distribution with degrees of freedom v0 and covariance 

matrix R0, b0 = (b0
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The log likelihood function of (6) in restricted parameters can be expressed as 
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And prior distribution can be represented by 
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Then, θ1
*
 given θ2

*
 and θ2

*
 given θ1

*
 are normally distributed with 
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Therefore we can obtain the following posterior distribution as:  
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We cannot calculate the posterior distribution directly; however we can easily investigate the 

properties of estimates by exploiting the Gibbs sampling algorithm. The full conditional 

distributions of θ1
*
, θ2

*
, and Σ are given by 
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Since the full conditional distributions have a standard form, we can apply the Gibbs sampling to 



calculate θ
*
 and Σ. 

 

4  Application to the real data 

 

The Household Survey data used in this analysis is an annual time series of the Family Income and 

Expenditure Survey (FIES)
1
 by the Statistics Bureau from 1963 to 2001 in Japan. The consumption 

expenditure is roughly classified into five commodities; 1.Food, 2.Housing, 3.Fuel, 4.Clothing, and 

5.Miscellaneous. The price data have been obtained from the Consumer Price Index and calculated using 

2000 as the base year. We calculate the Bayesian estimates from the posterior distribution and compare 

the posterior results in the AID system model with those in the LAID system model. In addition, we 

measure model complexity and fit by Deviance Information Criterion (DIC) by Spiegelhalter et al. 

(2002) for two models with three demand restrictions as a model selection criterion.  

 

4.1    Posterior results 

 

We compute posterior results in the AID and the LAID system models.
2
 In the LAID system 

model, we use Stone's index instead of (2) as  

.lnln
1





n

i

ititt
pwP                             (18) 

The details of a Bayesian approach for the LAID system model are described in Appendix. We 

calculate their parameters θ
*
 or β

*
 of two models by using the Gibbs sampling algorithm. In the AID 

system model, parameters β
*
 can obtain by simulating the parameter vector θ

*
, and it is partitioned 

into two blocks (θ1
*
, θ2

*
) to generate separately in simulation. In the MCMC estimations, we choose 

the prior distribution as θ
*
~ N(0, 10

4
I) and Σ ~ IW(10, 0.05I).

3
 We use Zellner (1963)'s SUR 

estimates in the non-Bayesian approach as the initial values of θ
*
(0) and Σ(0) in the Gibbs sampling 

algorithm. The MCMC simulation is generated 15,000 draws from posterior distribution after 

discarding the first 5,000 draws as burn-in periods. Our results are executed on a personal computer, 

                                                   
1 The data is a year average of monthly receipts and disbursements per household in all household. 
2 The full conditional distribution in the LAID system model is indicated in Appendix. 
3 In the LAID system model, we assume the prior distribution as β

*
 ~ N(0, 10

4
I) and Σ ~ IW(10, 0.05I). 



using the OX code.  

Tables 1 to 3 show the posterior means and standard deviations of parameters in the AID and 

LAID system models. In the AID system model, we set a0 = 0. In adding-up condition of Table 1, 

the posterior means of parameters in both models are relatively similar values each other. In 

particular, the income parameters are remarkable. However, the estimates of the AID model have 

the smaller standard deviations than the LAID model. In homogeneity of Table 2 and symmetry 

conditions of Table 3, their parameters between two models occasionally depart from each other. 

For instance, intercept a2 of the AID model has still smaller value than the LAID model in both 

conditions. Generally, the differences of posterior results in both models come to be large with 

demand restrictions. 

In (1), the income elasticity is given by 

.1
i

i

i
w

c
                                  (19) 

And the uncompensated (Marshallian) price elasticity is given by 
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where δij is the Kronecker delta (when i = j, δij = 1, and otherwise 0). Tables 4 and 5 report the 

income and own-price elasticities from the posterior results. In both models of Table 4, the income 

elasticities in adding-up show that 2.Housing, 4.Clothing and 5.Miscellaneous are elastic, and 

1.Food and 3.Fuel are inelastic. Then, in the imposition of homogeneity restriction, the income 

elasticity for 3.Fuel changes to be elastic and that for 4.Clothing changes to be inelastic. In 

symmetry condition, their difference of estimate between the AID and LAID models appears for the 

income elasticity of 3.Fuel. In the LAID model, the income elasticity for 3.Fuel largely changes by 

the imposition of demand restrictions, that is, estimates in the LAID model is sensitive to parameter 

restriction. For the own price elasticities of Table 5, these values in both models largely change by 

each condition in almost commodities. For example, the own price elasticity for 4.Clothing in the 

LAID model changes from -0.78 in the adding-up condition to -1.13 in the homogeneity condition. 

Like the posterior results in Table 2, the standard deviations of elasticities in the AID model show 

smaller than those in the LAID model. Thus, the AID model in our estimation can simulate the 



parameters having the smaller variance than the LAID system model. 

In addition, we can calculate the true AI price index using the posterior results. These are 

indicated on the lower side of Tables 1 to 3. With the imposition of demand restrictions, the AI 

price index comes to be smaller, at the same time, the divergences between the AI and LAI price 

indices are also larger. That is, as showed in Table 3, the more we impose the demand restrictions, 

the larger both estimates between the AID and LAID system models diverge. In the Bayesian 

approach, we can compute the standard deviation and the 95% credible interval of AI price index, 

and judge its statistical significance.  

Further we compute the correlation between the LAI price index and their disturbances. The 

correlation between the price index and disturbances will violate the standard orthogonality 

condition and yield the errors in variables problem. The calculated correlation r = (0.997, -0.996, 

-0.962, 0.646) where r denotes the correlation between the LAI price index and the i th equation 

disturbance (i = 1,…, n - 1). This shows the positive or negative high collinearity between them, 

and the use of the LAI price index brings the serious problems in econometrics. 

 

4.2 Model selection by Deviance Information Criterion 

 

We introduce the Deviance Information Criterion (DIC) by Spiegelhalter et al. (2002), which 

measures model complexity and fit as the model selection criterion. The DIC is an appropriate 

measurement for model selection because it accounts for model fit and model size well. Xiao et al. 

(2007) has applied this criterion to the selection of best functional forms in U.S. electricity demand. 

Model with smaller DIC values is preferred to one with larger DIC. We use the DIC for the model 

selection between the AID and LAID system models. The DIC can be calculated by 

),()( **  DDDIC                              (21) 

where  

)}.(log{2)},|(log{2)( **

tt
YfYlD    

)( *D  is the average of D(θ
*
) and D( * ) computes at the average values of θ

*
. l(・) is the evaluated 

likelihood at the θ
*
. We set f (Yt) = 1 following to Spiegelhalter et al. (2002). The DIC computed 

from the posterior results are reported in Table 6. 



We calculate each three DIC values for the AID and LAID system models. Table 6 shows the 

DIC values in the AID system are smaller than the LAID system in all demand restrictions. 

Therefore we find the AID system is preferred to the LAID system model. Especially, the 

homogeneity constrained model in the AID system outperforms the other model specifications. 

These support our posterior results in model selection. 

    

5  Concluding remarks 

 

We calculate the true parameters of the AID system model by the Bayesian method, not 

depending on their price index. Heretofore, the estimation of the AID system model largely depends 

on the price index. Therefore the calculated estimates must have a bias problem when we use a 

problematic price index such as the linearized price index of (18). We equally estimate the LAID 

system model with Stone's index in order to compare to our estimation in the AID system model. In 

our application to real data, we report a Japanese household demand with five commodities. Our 

empirical results show that posterior means of the AID system model derived from our Bayesian 

estimation have the smaller variance than those from the LAID model. Further, we find that their 

estimates between the AID and LAID system diverge with the imposition of demand restrictions. 

This evidence can make a clear from calculating the value itself of the AI price index in (2) from 

the posterior results. The values of AI price index come to be so smaller with the imposition of 

demand restrictions that the divergence between the AI and LAI price indices would be large. 

According to our estimation, we can also investigate the true biases of the linearized price index 

from the AI price index. Additionally, we compare the validity of both AID and LAID system 

models by the DIC of model selection criterion. The DIC shows the AID system model is superior 

to the alternative. Above all, the homogeneity or symmetry constrained model is the best functional 

form in our application. 



Appendix 

In the AID system model, θ
*
 is constructed by E

*
 matrix. For n = 5, E

*
 matrix in (8) can be written as 

follows: 
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and E1 = E0 In. E0 matrix is common to all cases. 
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In the LAID system model, Zt
*
 of (6) can be written as follows: 
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The prior distributions of β and Σ are given by 



β ~ N(b0, B0),     ),(~ 00

1 RvW  . 

The full conditional distributions of β and Σ are given by  
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Table 1 Posterior mean results in adding-up condition 

 i ai bi1 bi2 bi3 bi4 bi5 ci 

(I) AI        

1 0.9793 0.3943 -0.0326 -0.0832 -0.2049 -0.3302 -0.0500 

 (0.0075) (0.0095) (0.0096) (0.0094) (0.0100) (0.0094) (0.0099) 

2 0.1689 -0.0446 0.0680 -0.0181 0.1555 -0.0404 -0.0201 

 (0.0090) (0.0095) (0.0094) (0.0098) (0.0090) (0.0086) (0.0101) 

3 0.1899 -0.0404 -0.0061 0.0354 0.0747 -0.0199 -0.0201 

 (0.0087) (0.0081) (0.0099) (0.0078) (0.0084) (0.0087) (0.0097) 

4 -0.2684 -0.0622 0.0840 -0.0120 0.0363 -0.0702 0.0601 

 (0.0089) (0.0099) (0.0086) (0.0083) (0.0079) (0.0085) (0.0099) 

5 -0.0697 -0.2472 -0.1133 0.0779 -0.0616 0.4607 0.0297 

 (0.0100) (0.0099) (0.0100) (0.0101) (0.0100) (0.0098) (0.0099) 

        

lnPt 2.404 [1.8697, 2.6010]     

 (0.0717)       

        

(II) LAI        

1 0.9098 0.4595 0.0395 0.0095 -0.1706 -0.3405 -0.0518 

 (0.2589) (0.0684) (0.0654) (0.0243) (0.0444) (0.0645) (0.0402) 

2 0.2703 -0.0390 0.0809 -0.0389 0.0509 -0.0489 -0.0169 

 (0.5896) (0.1558) (0.1489) (0.0554) (0.1010) (0.1469) (0.0916) 

3 0.1896 -0.0506 -0.0406 0.0891 0.0293 0.0093 -0.0221 

 (0.5093) (0.1346) (0.1286) (0.0479) (0.0873) (0.1268) (0.0791) 

4 -0.3201 -0.0301 0.0799 0.0080 0.0199 -0.1602 0.0599 

 (0.1432) (0.0378) (0.0362) (0.0135) (0.0245) (0.0357) (0.0222) 

5 -0.0496 -0.3397 -0.1597 -0.0676 0.0705 0.5404 0.0309 

 (0.0202) (0.0187) (0.0194) (0.0193) (0.0198) (0.0196) (0.0145) 

        

lnPt 4.145       

        

        

Notes: The number in commodity denotes 1.Food, 2.Housing, 3.Fuel, 4.Clothing, and 5.Miscellaneous. Pt 

denotes the value of price index calculated from the posterior results. The values in parentheses are the 

posterior standard deviations. [] denotes the 95% credible interval of price index. 

 

 

 

 

 

 

  



Table 2 Posterior mean results in homogeneity condition 

i ai bi1 bi2 bi3 bi4 bi5 ci 

(I) AI        

1 0.8339 0.4249 -0.0174 -0.0106 -0.1721 -0.3397 -0.0499 

 (0.0031) (0.0011) (0.0031) (0.0030) (0.0032) (0.0031) (0.0031) 

2 0.0061 -0.0131 0.0372 -0.0193 0.1257 -0.0597 -0.0101 

 (0.0030) (0.0027) (0.0029) (0.0030) (0.0032) (0.0032) (0.0031) 

3 -0.0236 -0.0477 -0.0867 0.0828 0.0849 -0.0297 0.0059 

 (0.0013) (0.0012) (0.0028) (0.0028) (0.0031) (0.0031) (0.0031) 

4 0.0617 -0.0256 0.1107 0.0104 0.0392 -0.0977 -0.0010 

 (0.0028) (0.0028) (0.0029) (0.0030) (0.0031) (0.0032) (0.0032) 

5 -0.1500 -0.3469 -0.1702 -0.0808 0.0706 0.5305 0.0549 

 (0.0029) (0.0027) (0.0026) (0.0028) (0.0031) (0.0031) (0.0031) 

        

lnPt 0.851 [0.3743, 1.8319]     

 (0.2457)       

        

(II) LAI        

1 0.8699 0.4599 0.0299 0.0199 -0.1700 -0.3397 -0.0501 

 (0.0533) (0.0365) (0.0311) (0.0098) (0.0219) (0.0201) (0.0042) 

2 0.2298 -0.0500 0.0798 -0.0301 0.0601 -0.0598 -0.0102 

 (0.0485) (0.0331) (0.0283) (0.0089) (0.0198) (0.0198) (0.0038) 

3 -0.0198 -0.0599 -0.0701 0.1102 0.0499 -0.0299 0.0062 

 (0.0532) (0.0364) (0.0311) (0.0097) (0.0218) (0.0199) (0.0041) 

4 0.0699 -0.0019 0.1305 -0.0201 -0.0098 -0.0982 -0.0010 

 (0.0533) (0.0365) (0.0312) (0.0098) (0.0218) (0.0197) (0.0041) 

5 -0.1498 -0.3480 -0.1697 -0.0799 0.0699 0.5277 0.0551 

 (0.0199) (0.0201) (0.0199) (0.0201) (0.0198) (0.0398) (0.0116) 

        

lnPt 4.145       

        

        

Notes: 1.Food, 2.Housing, 3.Fuel, 4.Clothing, 5.Miscellaneous. The values in parentheses are the posterior 

standard deviations. [] denotes the 95% credible interval of price index. 

 

 

 

 

 

 

 

  



Table 3 Posterior mean results in symmetry condition 

i ai bi1 bi2 bi3 bi4 bi5 ci 

(I) AI        

1 0.9281 0.3747 -0.0002 0.0181 -0.1068 -0.3293 -0.0599 

 (0.0031) (0.0030) (0.0023) (0.0029) (0.0030) (0.0032) (0.0031) 

2 -0.0005  0.0163 -0.0415 0.0812 -0.0993 -0.0130 

 (0.0008)  (0.0013) (0.0028) (0.0028) (0.0032) (0.0032) 

3 -0.1152   0.0881 0.0069 -0.0793 0.0099 

 (0.0031)   (0.0030) (0.0027) (0.0031) (0.0031) 

4 0.1507    0.1003 -0.0193 -0.0079 

 (0.0030)    (0.0028) (0.0031) (0.0032) 

5 -0.3009     0.5348 0.0709 

 (0.0032)     (0.0031) (0.0031) 

        

lnPt 1.372 [1.2837, 2.0020]     

 (0.2457)       

        

(II) LAI        

1 0.9731 0.3982 -0.0126 0.0206 -0.0870 -0.3192 -0.0623 

 (0.0105) (0.0099) (0.0101) (0.0099) (0.0102) (0.0199) (0.0098) 

2 0.2494  0.0630 -0.0316 0.0789 -0.0976 -0.0123 

 (0.0120)  (0.0102) (0.0100) (0.0104) (0.0100) (0.0202) 

3 -0.1105   0.1102 -0.0201 -0.0792 -0.0441 

 (0.0099)   (0.0101) (0.0099) (0.0200) (0.0199) 

4 0.0293    0.0205 0.0076 -0.0012 

 (0.0155)    (0.0194) (0.0096) (0.0268) 

5 -0.1413     0.4884 0.1199 

 (0.0209)     (0.0566) (0.0239) 

        

lnPt 4.145       

        

        

Notes: 1.Food, 2.Housing, 3.Fuel, 4.Clothing, 5.Miscellaneous. The values in parentheses are the posterior 

standard deviations. [] denotes the 95% credible interval of price index. 

 

 

 

 

 

 

 

  



Table 4 Income elasticities from the posterior mean results 

 1 2 3 4 5 

(I) AID      

Adding-up 0.8287 0.8096 0.6716 1.8261 1.0638 

 (0.0344) (0.0963) (0.1632) (0.1381) (0.0225) 

Homogeneity 0.8316 0.8949 1.1092 0.9878 1.1163 

 (0.0109) (0.0304) (0.0516) (0.0436) (0.0071) 

Symmetry 0.7979 0.8635 1.1825 0.9009 1.1502 

 (0.0106) (0.0332) (0.0572) (0.0394) (0.0066) 

      

(II) LAID      

Adding-up 0.8223 0.8394 0.6389 1.8231 1.0660 

 (0.0233) (0.0687) (0.1210) (0.1037) (0.0309) 

Homogeneity 0.8286 0.9028 1.1022 0.9859 1.1175 

 (0.0168) (0.0539) (0.1013) (0.0877) (0.0248) 

Symmetry 0.7864 0.8834 0.2783 0.9834 1.2558 

 (0.0338) (0.0945) (0.3266) (0.1316) (0.0512) 

      

Notes: 1.Food, 2.Housing, 3.Fuel, 4.Clothing, 5.Miscellaneous. The values in parentheses  

are the posterior standard deviations. 

 

 

Table 5 Own price elasticities from the posterior mean results 

 1 2 3 4 5 

(I) AID      

Adding-up 0.4009 -0.3345 -0.4005 -0.5611 -1.4100 

 (0.0342) (0.0838) (0.1445) (0.1172) (0.0236) 

Homogeneity 0.4821 -0.5998 0.5114 -0.5119 0.0672 

 (0.0092) (0.0154) (0.0321) (0.0252) (0.0076) 

Symmetry 0.3229 -0.8159 0.6038 0.2534 0.0603 

 (0.0104) (0.0143) (0.0541) (0.0351) (0.0074) 

      

(II) LAID      

Adding-up 0.6259 -0.2151 0.4809 -0.7867 0.1216 

 (0.0355) (0.0937) (0.1606) (0.1361) (0.0466) 

Homogeneity 0.6258 -0.2319 0.7966 -1.1347 0.0705 

 (0.0343) (0.0952) (0.1643) (0.1378) (0.0857) 

Symmetry 0.4267 -0.3900 0.8479 -0.7167 -0.0782 

 (0.0356) (0.0972) (0.1657) (0.2685) (0.1285) 

      

Notes: 1.Food, 2.Housing, 3.Fuel, 4.Clothing, 5.Miscellaneous. The values in parentheses  

are the posterior standard deviations. 

 

Table 6 The DIC for the AID and LAID models 

DIC AI LAI 



   

Adding-up 1572.6 1723.5 

Homogeneity 968.2 1723.5 

Symmetry 1245.8 1772.1 

   

Notes: DIC shows the Deviance Information Criterion by  

Spiegelhalter et al. (2002). 

 

 

 


